Flexible Nanocarbon Electrodes for Holistically Engineered Solar Cell and Battery Integrated Piezoresistive Sensor

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS Energy technology Pub Date : 2024-08-22 DOI:10.1002/ente.202400991
Brindha Ramasubramanian, Vundrala Sumedha Reddy, Zhen Ye, Goh Wei Peng, Yang Le, Seeram Ramakrishna, Vijila Chellappan
{"title":"Flexible Nanocarbon Electrodes for Holistically Engineered Solar Cell and Battery Integrated Piezoresistive Sensor","authors":"Brindha Ramasubramanian, Vundrala Sumedha Reddy, Zhen Ye, Goh Wei Peng, Yang Le, Seeram Ramakrishna, Vijila Chellappan","doi":"10.1002/ente.202400991","DOIUrl":null,"url":null,"abstract":"Herein, a sustainable graphitic carbon derived from waste polystyrene plastics (PS‐G) has been developed and a proof of concept for the integration of organic solar cells, Al‐ion batteries, and piezoresistive sensors based on PS‐G electrodes has been provided. First, a flexible organic solar cell (OSC) with the PS‐G interfacial layer between the photoactive material and the Al metal has enhanced charge extraction mobility with a power conversion efficiency (PCE) of 3.5%. A new range of possibilities in metal:semiconductor:carbon:metal contact and interfacial tuning in OSCs are made possible by the fact that pure PS‐G without Al can successfully extract electrons with a PCE of 0.89%. Second, when used as the cathode in an Al–carbon battery, PS‐G demonstrates a specific capacity of 148 mAh g<jats:sup>−1</jats:sup> at 50 mA g<jats:sup>−1</jats:sup>. At different current densities, PS‐G cathodes demonstrate high cycling stability (with 65% capacity retention over 100 cycles). Finally, the best of the fabricated OSCs and the Al–carbon batteries are then combined with a piezoresistive sensor that includes an active PS‐G electrode. The battery‐powered sensor has a resistance of 40–45 × 104 Ω while the solar‐powered sensor has a resistance of 32–35 × 104 Ω, when subjected to mechanical stimuli, with a tensile strength of 20 N.","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"55 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/ente.202400991","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a sustainable graphitic carbon derived from waste polystyrene plastics (PS‐G) has been developed and a proof of concept for the integration of organic solar cells, Al‐ion batteries, and piezoresistive sensors based on PS‐G electrodes has been provided. First, a flexible organic solar cell (OSC) with the PS‐G interfacial layer between the photoactive material and the Al metal has enhanced charge extraction mobility with a power conversion efficiency (PCE) of 3.5%. A new range of possibilities in metal:semiconductor:carbon:metal contact and interfacial tuning in OSCs are made possible by the fact that pure PS‐G without Al can successfully extract electrons with a PCE of 0.89%. Second, when used as the cathode in an Al–carbon battery, PS‐G demonstrates a specific capacity of 148 mAh g−1 at 50 mA g−1. At different current densities, PS‐G cathodes demonstrate high cycling stability (with 65% capacity retention over 100 cycles). Finally, the best of the fabricated OSCs and the Al–carbon batteries are then combined with a piezoresistive sensor that includes an active PS‐G electrode. The battery‐powered sensor has a resistance of 40–45 × 104 Ω while the solar‐powered sensor has a resistance of 32–35 × 104 Ω, when subjected to mechanical stimuli, with a tensile strength of 20 N.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于集成太阳能电池和电池的整体工程压阻传感器的柔性纳米碳电极
在此,我们开发了一种从废弃聚苯乙烯塑料(PS-G)中提取的可持续石墨碳,并提供了基于 PS-G 电极的有机太阳能电池、铝离子电池和压阻传感器集成的概念验证。首先,在光活性材料和铝金属之间使用 PS-G 界面层的柔性有机太阳能电池(OSC)提高了电荷提取流动性,功率转换效率(PCE)达到 3.5%。不含铝的纯 PS-G 可成功萃取电子,其 PCE 为 0.89%,这为 OSC 中的金属:半导体:碳:金属接触和界面调整提供了新的可能性。其次,在铝碳电池中用作阴极时,PS-G 在 50 mA g-1 电流下的比容量为 148 mAh g-1。在不同的电流密度下,PS-G 阴极表现出很高的循环稳定性(100 次循环后容量保持率为 65%)。最后,制备出的最佳 OSC 和铝碳电池与包含有源 PS-G 电极的压阻传感器相结合。电池供电传感器的电阻为 40-45 × 104 Ω,而太阳能供电传感器的电阻为 32-35 × 104 Ω,当受到机械刺激时,抗拉强度为 20 N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
期刊最新文献
Cover Picture Masthead Enhancing Supercapacitor Performance of NiCoMn‐Layered Double Hydroxide with Ag–Citrate/Polyaniline Nanocomposites Cover Picture Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1