Tumelo Mohomi, Nkanyiso B Mbatha, Danie S Boshoff, Innocent L Mbokodo, Thando Ndarana, Mary-Jane M Bopape, Hector Chikoore
{"title":"Attributing impacts of LULCC on the boundary layer climate of South Africa’s eastern escarpment","authors":"Tumelo Mohomi, Nkanyiso B Mbatha, Danie S Boshoff, Innocent L Mbokodo, Thando Ndarana, Mary-Jane M Bopape, Hector Chikoore","doi":"10.1007/s12040-024-02388-y","DOIUrl":null,"url":null,"abstract":"<p>Land surface characteristics may influence the planetary boundary layer atmosphere and climate through exchanges of moisture, energy, and momentum near the surface. We attributed the impact of multitemporal landsat-derived land use/land cover change (LULCC) on temperature and precipitation variability in eastern South Africa using reanalysis data and satellite-derived estimates from 1979 to 2020. Landsat images were classified into different land cover classes using a machine learning random forest pixel-based supervised algorithm within the cloud-based Google Earth Engine. Time series analysis was employed to analyze cycles and trends in LULCC and hydrometeorological variables, whilst the variable importance model determined the most sensitive variable. The impacts of LULCC on the boundary layer climate were attributed via multiple linear regression. An uninterrupted rapid expansion of urban areas was observed, resulting in the transformation of grasslands, water bodies, forests, and croplands. Statistically significant changes in moisture and energy fluxes, and hydrometeorological variables were observed across the study period. Latent heat flux (LHF), as well as rainfall decreased, while maximum temperature, sensible heat, and potential evapotranspiration (PET) increased significantly. We found that LULCC is significantly impacting the boundary layer climate, with urban and bare land, grasslands, forests, and croplands influencing temperature positively while negatively influencing rainfall. Rainfall was most sensitive to changes in LHF, whilst the key driver of temperature variability was PET. Our results reinforce the significance of LULCC and associated feedbacks to understanding boundary layer processes, climate variability, and change.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"4 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02388-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Land surface characteristics may influence the planetary boundary layer atmosphere and climate through exchanges of moisture, energy, and momentum near the surface. We attributed the impact of multitemporal landsat-derived land use/land cover change (LULCC) on temperature and precipitation variability in eastern South Africa using reanalysis data and satellite-derived estimates from 1979 to 2020. Landsat images were classified into different land cover classes using a machine learning random forest pixel-based supervised algorithm within the cloud-based Google Earth Engine. Time series analysis was employed to analyze cycles and trends in LULCC and hydrometeorological variables, whilst the variable importance model determined the most sensitive variable. The impacts of LULCC on the boundary layer climate were attributed via multiple linear regression. An uninterrupted rapid expansion of urban areas was observed, resulting in the transformation of grasslands, water bodies, forests, and croplands. Statistically significant changes in moisture and energy fluxes, and hydrometeorological variables were observed across the study period. Latent heat flux (LHF), as well as rainfall decreased, while maximum temperature, sensible heat, and potential evapotranspiration (PET) increased significantly. We found that LULCC is significantly impacting the boundary layer climate, with urban and bare land, grasslands, forests, and croplands influencing temperature positively while negatively influencing rainfall. Rainfall was most sensitive to changes in LHF, whilst the key driver of temperature variability was PET. Our results reinforce the significance of LULCC and associated feedbacks to understanding boundary layer processes, climate variability, and change.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.