Udhaya Kumar Aruchamy, Emilia Merino, Alicia Durán, Helena Pálková, Dušan Galusek, Yolanda Castro
{"title":"Humidity-induced curing and anti-corrosion properties of GPTMS-modified polyorganosilazane functionalized silica coating on AA2024-T3 aluminum alloy","authors":"Udhaya Kumar Aruchamy, Emilia Merino, Alicia Durán, Helena Pálková, Dušan Galusek, Yolanda Castro","doi":"10.1007/s10971-024-06473-y","DOIUrl":null,"url":null,"abstract":"<div><p>Relative humidity (RH) is one of the key parameters that significantly affect the curing kinetics and final properties of polysilazane-based coatings. Thus, the paper discusses the effect of relative humidity during the curing process and the anti-corrosion properties of (3-glycidyloxypropyl) trimethoxysilane (GPTMS)-modified polyorganosilazane (OPSZ) functionalized silica coatings on AA2024-T3. Modified polyorganosilazane sol was prepared and then deposited on AA2024-T3 substrates varying the curing conditions. After the deposition, the coated aluminum substrates were exposed to different RH levels; 15%, 40% and 80%, and then cured at 120 °C for 2 h. Transparent and crack-free GPTMS-modified polyorganosilazane coatings with a thickness of around 15–17 μm were obtained. The exposure to the relative humidity increased the crosslinking and hydrolysis-condensation reactions of the OPSZ and GPTMS molecules, showing more Si-O-Si bonds. The incorporation of GPTMS affected the crosslinking structure, enhancing the corrosion protection properties of the coating. GPTMS-modified polyorganosilazane coatings cured at 40%RH had the best anti-corrosive properties after immersion in 3.5 wt% NaCl solution. The impedance modulus of ∼10<sup>9</sup> Ω.cm<sup>2</sup> at a low frequency was obtained, which was five orders of magnitude higher than that for the AA2024-T3 alloy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"140 - 151"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06473-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06473-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Relative humidity (RH) is one of the key parameters that significantly affect the curing kinetics and final properties of polysilazane-based coatings. Thus, the paper discusses the effect of relative humidity during the curing process and the anti-corrosion properties of (3-glycidyloxypropyl) trimethoxysilane (GPTMS)-modified polyorganosilazane (OPSZ) functionalized silica coatings on AA2024-T3. Modified polyorganosilazane sol was prepared and then deposited on AA2024-T3 substrates varying the curing conditions. After the deposition, the coated aluminum substrates were exposed to different RH levels; 15%, 40% and 80%, and then cured at 120 °C for 2 h. Transparent and crack-free GPTMS-modified polyorganosilazane coatings with a thickness of around 15–17 μm were obtained. The exposure to the relative humidity increased the crosslinking and hydrolysis-condensation reactions of the OPSZ and GPTMS molecules, showing more Si-O-Si bonds. The incorporation of GPTMS affected the crosslinking structure, enhancing the corrosion protection properties of the coating. GPTMS-modified polyorganosilazane coatings cured at 40%RH had the best anti-corrosive properties after immersion in 3.5 wt% NaCl solution. The impedance modulus of ∼109 Ω.cm2 at a low frequency was obtained, which was five orders of magnitude higher than that for the AA2024-T3 alloy.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.