Optical simulation of triple-junction tandem solar cell based on SnO2 core nanowire array embedded in CZTSe, Cs2SnI6 and CuAlxIn1−xTe2 layers in bottom, middle and top cells, respectively

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-09-02 DOI:10.1140/epjd/s10053-024-00906-7
Mohamed Iheb Hammami, Rim Haji, Oussama Taleb Jlidi, Adnen Melliti
{"title":"Optical simulation of triple-junction tandem solar cell based on SnO2 core nanowire array embedded in CZTSe, Cs2SnI6 and CuAlxIn1−xTe2 layers in bottom, middle and top cells, respectively","authors":"Mohamed Iheb Hammami,&nbsp;Rim Haji,&nbsp;Oussama Taleb Jlidi,&nbsp;Adnen Melliti","doi":"10.1140/epjd/s10053-024-00906-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on optical optimizing triple-junction tandem solar cell using a novel combination of absorber materials and SnO<sub>2</sub> vertically aligned nanowire array buffer layers to enhance power conversion efficiency. The absorbers in the bottom, middle and top cells are CZTSe, Cs<sub>2</sub>SnI<sub>6</sub> and CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub>, respectively. The bandgaps of CZTSe and Cs<sub>2</sub>SnI<sub>6</sub> are 1.05 and 1.62 eV, respectively. On the other hand, that of CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub> depends on <i>x</i> and varies from 1.71 to 2.2 eV. The top cell is coated by an anti-reflective layer. Rigorous coupled wave analysis simulations were used to optimize geometrical parameters of the tandem cell. Results show that the efficiency of the optimized tandem cell reaches 42.15% for <i>x</i> = 0.3 in CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub>. This work helps advance the design of high-performance solar cells for sustainable energy applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 9","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00906-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on optical optimizing triple-junction tandem solar cell using a novel combination of absorber materials and SnO2 vertically aligned nanowire array buffer layers to enhance power conversion efficiency. The absorbers in the bottom, middle and top cells are CZTSe, Cs2SnI6 and CuAlxIn1−xTe2, respectively. The bandgaps of CZTSe and Cs2SnI6 are 1.05 and 1.62 eV, respectively. On the other hand, that of CuAlxIn1−xTe2 depends on x and varies from 1.71 to 2.2 eV. The top cell is coated by an anti-reflective layer. Rigorous coupled wave analysis simulations were used to optimize geometrical parameters of the tandem cell. Results show that the efficiency of the optimized tandem cell reaches 42.15% for x = 0.3 in CuAlxIn1−xTe2. This work helps advance the design of high-performance solar cells for sustainable energy applications.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分别嵌入 CZTSe、Cs2SnI6 和 CuAlxIn1-xTe2 层的 SnO2 核心纳米线阵列的底层、中层和顶层三结串联太阳能电池的光学模拟
本研究的重点是利用吸收材料与二氧化锰垂直排列纳米线阵列缓冲层的新型组合对三重结串联太阳能电池进行光学优化,以提高功率转换效率。底部、中部和顶部电池中的吸收体分别为 CZTSe、Cs2SnI6 和 CuAlxIn1-xTe2。CZTSe 和 Cs2SnI6 的带隙分别为 1.05 和 1.62 eV。另一方面,CuAlxIn1-xTe2 的带隙取决于 x,从 1.71 到 2.2 eV 不等。顶部电池镀有一层抗反射层。严格的耦合波分析模拟用于优化串联电池的几何参数。结果表明,在 CuAlxIn1-xTe2 中 x = 0.3 时,优化后的串联电池效率达到 42.15%。这项工作有助于推动可持续能源应用领域高性能太阳能电池的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Short laser pulse effects on spectral dynamics of encapsulated He, Ne, Ar atoms in fullerenes A molecular dynamics simulation framework for investigating ionizing radiation-induced nano-bubble interactions at ultra-high dose rates Ionization of argon atom by positron and electron impact Discharge characteristics and ozone generation during CO2 to CO conversion by dielectric barrier discharge packed with TiO2-coated glass beads Correction: Gravitational force-induced changes in collisionless shock wave behavior in a charge-varying nonthermal dusty plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1