{"title":"Lead toxicity mitigation effect of a Lactiplantibacillus plantarum–chondroitin sulfate complex revealed by microbiome and metabolomic analyses†","authors":"Feng Chen, Jiani Pan, Leilei Yu, Chuan Zhang, Jianxin Zhao, Fengwei Tian, Qixiao Zhai and Wei Chen","doi":"10.1039/D4FO02815E","DOIUrl":null,"url":null,"abstract":"<p >Lead (Pb) is a highly toxic metal with no physiological function in humans, accumulates in the body through food intake, and causes gut microbiome disorders and other hazards. In the present study, we examined the efficacy of a combination of chondroitin sulfate and <em>Lactiplantibacillus plantarum</em> CCFM8661 (CCFM8661 + CS) on tissue Pb accumulation and pathological damage to the liver and kidneys, gut microbiota, and fecal metabolites in Pb-exposed mice. Oral administration of CCFM8661 + CS to Pb-exposed mice reduced Pb accumulation in the liver, kidney, and bone tissues (from 3.70, 14.11 and 121.20 mg g<small><sup>−1</sup></small> wet tissue to 2.26, 8.72 and 65.57 mg g<small><sup>−1</sup></small> wet tissue, respectively) and increased total antioxidant capacity, superoxide dismutase, and glutathione in the liver and kidneys. Additionally, gut microbiome analysis showed that CCFM8661 + CS intervention attenuated Pb-induced perturbation in gut microbiota, altering the abundance of bacteria such as <em>Faecalibaculum</em>, <em>Ruminococcaceae UCG 014</em>, <em>Anaerostipes</em>, and <em>Enterorhabdus</em>. Untargeted metabolomics analyses showed that CCFM8661 + CS significantly increased cinnamoylglycine, hippuric acid, and equol (to 31.24, 28.77 and 20.13 times the baseline, respectively) and decreased guanine and 4-coumaric acid (0.30 and 0.09 times the baseline, respectively) in the feces, affecting pathways such as purine and amino acid metabolism. Further analyses showed that promoting Pb excretion and restoring the Pb-impaired gut microbiome and its metabolism may be important contributors to CCFM8661 + CS alleviation of Pb toxicity.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/fo/d4fo02815e","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead (Pb) is a highly toxic metal with no physiological function in humans, accumulates in the body through food intake, and causes gut microbiome disorders and other hazards. In the present study, we examined the efficacy of a combination of chondroitin sulfate and Lactiplantibacillus plantarum CCFM8661 (CCFM8661 + CS) on tissue Pb accumulation and pathological damage to the liver and kidneys, gut microbiota, and fecal metabolites in Pb-exposed mice. Oral administration of CCFM8661 + CS to Pb-exposed mice reduced Pb accumulation in the liver, kidney, and bone tissues (from 3.70, 14.11 and 121.20 mg g−1 wet tissue to 2.26, 8.72 and 65.57 mg g−1 wet tissue, respectively) and increased total antioxidant capacity, superoxide dismutase, and glutathione in the liver and kidneys. Additionally, gut microbiome analysis showed that CCFM8661 + CS intervention attenuated Pb-induced perturbation in gut microbiota, altering the abundance of bacteria such as Faecalibaculum, Ruminococcaceae UCG 014, Anaerostipes, and Enterorhabdus. Untargeted metabolomics analyses showed that CCFM8661 + CS significantly increased cinnamoylglycine, hippuric acid, and equol (to 31.24, 28.77 and 20.13 times the baseline, respectively) and decreased guanine and 4-coumaric acid (0.30 and 0.09 times the baseline, respectively) in the feces, affecting pathways such as purine and amino acid metabolism. Further analyses showed that promoting Pb excretion and restoring the Pb-impaired gut microbiome and its metabolism may be important contributors to CCFM8661 + CS alleviation of Pb toxicity.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.