Ana P Tobajas, Ana Agulló-García, José L Cubero, Carlos Colás, Alba Civera, Clara Esteban, Lourdes Sánchez, María D Pérez
Pru p 3, a member of the lipid transfer protein family, is considered a major allergen from peach as it often induces serious allergic reactions in peach-allergic individuals. The high resistance of Pru p 3 to processing treatments and to digestion or enzymatic hydrolysis is probably the cause of the severity of this fruit allergy. The aim of this study was to determine the effect of treatment with a large number of proteases from different origins (vegetal, animal and microbial) on the degradation and allergenicity of Pru p 3. To perform this study, Pru p 3 was previously isolated using cation exchange chromatography and ultrafiltration, and the purified protein was incubated with proteases under different conditions. The results showed that only two of the fifteen proteases assayed were able to efficiently degrade the protein at acidic pH, as determined by SDS-PAGE. These two commercial acid proteases, derived from Aspergillus niger, decreased by more than 95% the immunoreactivity of Pru p 3 by ELISA using specific rabbit IgG, giving peptides lower than 3.2 kDa as determined by MALDI-TOF mass spectrometry. The hydrolysates obtained showed a greater than 70% decrease in reactivity of IgE compared to untreated Pru p 3 using three pools of sera from peach allergic individuals. Furthermore, when hydrolysates were tested by the prick test, in more than 90% of peach-allergic patients the average size of the wheal significantly decreased by between 72% and 85%. The results suggest that the acid protease from Aspergillus niger could be used to obtain novel hypoallergenic products more tolerable for peach-sensitive individuals.
Pru p 3 是脂质转移蛋白家族的成员,被认为是桃子的主要过敏原,因为它经常会诱发对桃子过敏的人出现严重的过敏反应。Pru p 3 对加工处理、消化或酶水解具有很强的抵抗力,这可能是导致这种水果过敏症严重的原因。本研究的目的是确定用大量不同来源(植物、动物和微生物)的蛋白酶处理对 Pru p 3 降解和过敏性的影响。为了进行这项研究,之前使用阳离子交换色谱法和超滤法分离了 Pru p 3,并在不同条件下将纯化的蛋白质与蛋白酶进行孵育。结果表明,经 SDS-PAGE 测定,在 15 种检测的蛋白酶中,只有两种能在酸性 pH 条件下有效降解蛋白质。通过使用特异性兔 IgG 进行 ELISA 检测,这两种来自黑曲霉的商用酸性蛋白酶可使 Pru p 3 的免疫活性降低 95% 以上,通过 MALDI-TOF 质谱测定,可得到低于 3.2 kDa 的肽。与未经处理的 Pru p 3 相比,水解物在桃子过敏者的三组血清中的 IgE 反应性降低了 70% 以上。此外,当水解物通过点刺试验进行测试时,90% 以上的桃子过敏症患者的喘息的平均大小显著减少了 72% 至 85%。这些结果表明,黑曲霉的酸性蛋白酶可用于获得新型低过敏性产品,使对桃子敏感的人更容易接受。
{"title":"Enzymatic treatment to decrease the allergenicity of Pru p 3 from peach.","authors":"Ana P Tobajas, Ana Agulló-García, José L Cubero, Carlos Colás, Alba Civera, Clara Esteban, Lourdes Sánchez, María D Pérez","doi":"10.1039/d4fo03052d","DOIUrl":"https://doi.org/10.1039/d4fo03052d","url":null,"abstract":"<p><p>Pru p 3, a member of the lipid transfer protein family, is considered a major allergen from peach as it often induces serious allergic reactions in peach-allergic individuals. The high resistance of Pru p 3 to processing treatments and to digestion or enzymatic hydrolysis is probably the cause of the severity of this fruit allergy. The aim of this study was to determine the effect of treatment with a large number of proteases from different origins (vegetal, animal and microbial) on the degradation and allergenicity of Pru p 3. To perform this study, Pru p 3 was previously isolated using cation exchange chromatography and ultrafiltration, and the purified protein was incubated with proteases under different conditions. The results showed that only two of the fifteen proteases assayed were able to efficiently degrade the protein at acidic pH, as determined by SDS-PAGE. These two commercial acid proteases, derived from <i>Aspergillus niger</i>, decreased by more than 95% the immunoreactivity of Pru p 3 by ELISA using specific rabbit IgG, giving peptides lower than 3.2 kDa as determined by MALDI-TOF mass spectrometry. The hydrolysates obtained showed a greater than 70% decrease in reactivity of IgE compared to untreated Pru p 3 using three pools of sera from peach allergic individuals. Furthermore, when hydrolysates were tested by the prick test, in more than 90% of peach-allergic patients the average size of the wheal significantly decreased by between 72% and 85%. The results suggest that the acid protease from <i>Aspergillus niger</i> could be used to obtain novel hypoallergenic products more tolerable for peach-sensitive individuals.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sakshi Singh, Mehvish Habib, David Julian McClements, Khalid Bashir, Shumaila Jan, Kulsum Jan
Sorghum, belonging to the Poaceae family, is a widely consumed grain, particularly in Africa. Sorghum grains have been used in traditional African diets for centuries. These grains, along with their products, are known for their high nutritional value and possess various bioactive properties, including antioxidant, anti-obesity, anti-diabetic, anti-cardiovascular, anti-inflammatory, antimicrobial, and anticancer activities. Despite these benefits, sorghum grains face challenges due to the presence of certain anti-nutritional components such as tannins, phytates, trypsin inhibitors, and protein crosslinkers. Processing techniques such as soaking, germination, fermentation, thermal processing, and irradiation can improve the nutritional quality of sorghum by reducing anti-nutritional factors. Among these, fermentation, particularly when combined with other methods like soaking and germination, is considered most effective in enhancing the grain's nutritional value. This review addresses the current knowledge gaps regarding sorghum's nutritional and phytochemical composition and its potential health benefits. It also emphasizes the importance of further research to enhance sorghum's inherent nutritional attributes and promote its use as a sustainable crop to address global food security challenges. The findings highlight sorghum's potential in improving dietary quality and contributing to better health outcomes worldwide.
{"title":"Exploring the potential of sorghum with reference to its bioactivities, physicochemical properties and potential health benefits.","authors":"Sakshi Singh, Mehvish Habib, David Julian McClements, Khalid Bashir, Shumaila Jan, Kulsum Jan","doi":"10.1039/d4fo04128c","DOIUrl":"https://doi.org/10.1039/d4fo04128c","url":null,"abstract":"<p><p>Sorghum, belonging to the <i>Poaceae</i> family, is a widely consumed grain, particularly in Africa. Sorghum grains have been used in traditional African diets for centuries. These grains, along with their products, are known for their high nutritional value and possess various bioactive properties, including antioxidant, anti-obesity, anti-diabetic, anti-cardiovascular, anti-inflammatory, antimicrobial, and anticancer activities. Despite these benefits, sorghum grains face challenges due to the presence of certain anti-nutritional components such as tannins, phytates, trypsin inhibitors, and protein crosslinkers. Processing techniques such as soaking, germination, fermentation, thermal processing, and irradiation can improve the nutritional quality of sorghum by reducing anti-nutritional factors. Among these, fermentation, particularly when combined with other methods like soaking and germination, is considered most effective in enhancing the grain's nutritional value. This review addresses the current knowledge gaps regarding sorghum's nutritional and phytochemical composition and its potential health benefits. It also emphasizes the importance of further research to enhance sorghum's inherent nutritional attributes and promote its use as a sustainable crop to address global food security challenges. The findings highlight sorghum's potential in improving dietary quality and contributing to better health outcomes worldwide.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosalind Baynham, Jet J C S Veldhuijzen van Zanten, Catarina Rendeiro
Food choices during stressful periods often worsen, which can influence the impact of stress on vascular health. For instance, fat consumption impairs the recovery of endothelial function following mental stress, while flavanols have been shown to enhance recovery. This randomised, counterbalanced, double-blinded, crossover, postprandial intervention study examined whether flavanols consumed in combination with fat can mitigate the negative impact of fat on stress-induced impairments in endothelial function. Twenty-three young, healthy males and females ingested a high-fat meal (56.5 g fat) with high-flavanol (150 mg (-)-epicatechin) or low-flavanol (<6 mg (-)-epicatechin) cocoa 1.5 hours before an 8-minute mental stress task. The primary outcome, brachial flow-mediated dilatation (FMD), was assessed at pre-intervention baseline and 30 and 90 minutes post-stress. Pre-frontal cortical oxygenation was assessed post-meal at rest and during stress. Forearm blood flow (FBF), blood pressure (BP), cardiovascular activity, common carotid artery (CCA) diameter and blood flow and mood were assessed before, during and/or after stress. FMD was impaired at 30 and 90 minutes post-stress after the low-flavanol cocoa. High-flavanol cocoa attenuated FMD impairments at 30 minutes and improved FMD at 90 minutes post-stress. Mental stress induced similar increases in cortical oxygenation, FBF, BP, cardiovascular activity, and disruptions to mood, in both conditions. CCA diameter increased and CCA retrograde blood flow decreased post-stress, with no difference between conditions. In summary, flavanols can counteract declines in endothelial function induced by consuming fat in the context of stress, but do not impact cerebral oxygenation. These findings can have important implications for flavanol-rich dietary choices to protect the vasculature from stress.
{"title":"Cocoa flavanols rescue stress-induced declines in endothelial function after a high-fat meal, but do not affect cerebral oxygenation during stress in young, healthy adults.","authors":"Rosalind Baynham, Jet J C S Veldhuijzen van Zanten, Catarina Rendeiro","doi":"10.1039/d4fo03834g","DOIUrl":"https://doi.org/10.1039/d4fo03834g","url":null,"abstract":"<p><p>Food choices during stressful periods often worsen, which can influence the impact of stress on vascular health. For instance, fat consumption impairs the recovery of endothelial function following mental stress, while flavanols have been shown to enhance recovery. This randomised, counterbalanced, double-blinded, crossover, postprandial intervention study examined whether flavanols consumed in combination with fat can mitigate the negative impact of fat on stress-induced impairments in endothelial function. Twenty-three young, healthy males and females ingested a high-fat meal (56.5 g fat) with high-flavanol (150 mg (-)-epicatechin) or low-flavanol (<6 mg (-)-epicatechin) cocoa 1.5 hours before an 8-minute mental stress task. The primary outcome, brachial flow-mediated dilatation (FMD), was assessed at pre-intervention baseline and 30 and 90 minutes post-stress. Pre-frontal cortical oxygenation was assessed post-meal at rest and during stress. Forearm blood flow (FBF), blood pressure (BP), cardiovascular activity, common carotid artery (CCA) diameter and blood flow and mood were assessed before, during and/or after stress. FMD was impaired at 30 and 90 minutes post-stress after the low-flavanol cocoa. High-flavanol cocoa attenuated FMD impairments at 30 minutes and improved FMD at 90 minutes post-stress. Mental stress induced similar increases in cortical oxygenation, FBF, BP, cardiovascular activity, and disruptions to mood, in both conditions. CCA diameter increased and CCA retrograde blood flow decreased post-stress, with no difference between conditions. In summary, flavanols can counteract declines in endothelial function induced by consuming fat in the context of stress, but do not impact cerebral oxygenation. These findings can have important implications for flavanol-rich dietary choices to protect the vasculature from stress.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our previous studies have demonstrated that ubiquitin-specific peptidase 22 (USP22) has the capacity to accelerate renal epithelial-to-mesenchymal transition (EMT) and promote the pathological progression of diabetic tubulointerstitial fibrosis (TIF) by regulating the ubiquitination of Snail1, an EMT transcription factor. Quercetin is a type of flavonol compound widely found in fruits and vegetables that has anti-inflammatory, antioxidant and anti-fibrosis effects. However, whether quercetin promotes the degradation of Snail1 and regulates the pathological progression of TIF by inhibiting USP22 requires further investigation. In this study, we found that quercetin significantly inhibited the expression of USP22 and Snail1 in high glucose (HG)-induced renal tubular epithelial cells (TECs), and reversed the expression of EMT-related proteins and inhibited the overproduction of fibronectin (FN) and Collage Type IV (Collagen IV) induced by high glucose. Additionally, quercetin blocked the deubiquitination of Snail1 mediated by USP22. Further study found that quercetin inhibited the interaction between USP22 and Snail1, thereby reducing the stability of Snail1. Furthermore, quercetin also reduced the protein levels of USP22 and Snail1 in the kidney tissue of diabetic mice and ameliorated renal function, delayed EMT and TIF. In conclusion, quercetin regulates the USP22-Snail1 signal pathway to inhibit the occurrence of EMT both in vitro and in vivo, and ultimately ameliorate the pathological progress of TIF.
{"title":"Quercetin prevents the USP22-Snail1 signaling pathway to ameliorate diabetic tubulointerstitial fibrosis.","authors":"Xilin Zhao, Songping Wang, Xuelan He, Wentao Wei, Kaipeng Huang","doi":"10.1039/d4fo03564j","DOIUrl":"https://doi.org/10.1039/d4fo03564j","url":null,"abstract":"<p><p>Our previous studies have demonstrated that ubiquitin-specific peptidase 22 (USP22) has the capacity to accelerate renal epithelial-to-mesenchymal transition (EMT) and promote the pathological progression of diabetic tubulointerstitial fibrosis (TIF) by regulating the ubiquitination of Snail1, an EMT transcription factor. Quercetin is a type of flavonol compound widely found in fruits and vegetables that has anti-inflammatory, antioxidant and anti-fibrosis effects. However, whether quercetin promotes the degradation of Snail1 and regulates the pathological progression of TIF by inhibiting USP22 requires further investigation. In this study, we found that quercetin significantly inhibited the expression of USP22 and Snail1 in high glucose (HG)-induced renal tubular epithelial cells (TECs), and reversed the expression of EMT-related proteins and inhibited the overproduction of fibronectin (FN) and Collage Type IV (Collagen IV) induced by high glucose. Additionally, quercetin blocked the deubiquitination of Snail1 mediated by USP22. Further study found that quercetin inhibited the interaction between USP22 and Snail1, thereby reducing the stability of Snail1. Furthermore, quercetin also reduced the protein levels of USP22 and Snail1 in the kidney tissue of diabetic mice and ameliorated renal function, delayed EMT and TIF. In conclusion, quercetin regulates the USP22-Snail1 signal pathway to inhibit the occurrence of EMT both <i>in vitro</i> and <i>in vivo</i>, and ultimately ameliorate the pathological progress of TIF.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yahui Yuan, Chun Chen, Qiaoyun Liu, Yehao Luo, Zhaojun Yang, YuPing Lin, Lu Sun, Guanjie Fan
Background: Despite considerable literature supporting the benefit of dietary interventions in individuals with type 2 diabetes mellitus (T2DM) and overweight/obesity, which diet works best is currently unknown. We conducted a systematic review and network meta-analysis (NMA) to evaluate the comparative effectiveness of different dietary approaches in overweight or obese adults with T2DM. Methods: We searched EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL) and PubMed up till July 2023 for controlled studies using different dietary approaches. Next, we updated the literature search to September 2024 but found no new relevant studies. Glycated hemoglobin A1c (HbA1c) levels and body weight were used as primary outcomes. For each outcome, a pooled effect was determined for each intervention compared with other interventions. Mean differences (MDs) and 95% confidence intervals (95% CIs) were computed. The surface under the cumulative ranking curve (SUCRA) was used for ranking the dietary approaches. Moreover, confidence was assessed using the CINeMA (confidence in network meta-analysis) framework. Results: Overall, 31 trials that compared eight diet interventions (Mediterranean, moderate-carbohydrate, low-carbohydrate, vegetarian, low-glycaemic index/load, low-fat, high-protein and control diets) and involved 3096 people were included. In terms of glycemic control, the Mediterranean diet yielded the best ranking (SUCRA: 88.15%), followed by the moderate-carbohydrate diet (SUCRA: 83.3%) and low-carbohydrate (LC) diet (SUCRA: 55.7%). In terms of anthropometric measurements, the LC diet (SUCRA: 74.6%) ranked first, followed by the moderate-carbohydrate diet (SUCRA: 68.7%) and vegetarian diet (SUCRA: 57%). These results also showed that the differences in almost all dietary patterns regarding anthropometric measurements were mostly small and often trivial. Conclusions: In summary, the Mediterranean diet was the most efficient dietary intervention for the improvement of glycaemic control, and the LC diet obtained the highest score for anthropometric measurements in individuals with T2DM and concurrent overweight/obesity.
{"title":"A network meta-analysis of the comparative efficacy of different dietary approaches on glycaemic control and weight loss in patients with type 2 diabetes mellitus and overweight or obesity.","authors":"Yahui Yuan, Chun Chen, Qiaoyun Liu, Yehao Luo, Zhaojun Yang, YuPing Lin, Lu Sun, Guanjie Fan","doi":"10.1039/d4fo00337c","DOIUrl":"10.1039/d4fo00337c","url":null,"abstract":"<p><p><i>Background</i>: Despite considerable literature supporting the benefit of dietary interventions in individuals with type 2 diabetes mellitus (T2DM) and overweight/obesity, which diet works best is currently unknown. We conducted a systematic review and network meta-analysis (NMA) to evaluate the comparative effectiveness of different dietary approaches in overweight or obese adults with T2DM. <i>Methods</i>: We searched EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL) and PubMed up till July 2023 for controlled studies using different dietary approaches. Next, we updated the literature search to September 2024 but found no new relevant studies. Glycated hemoglobin A1c (HbA1c) levels and body weight were used as primary outcomes. For each outcome, a pooled effect was determined for each intervention compared with other interventions. Mean differences (MDs) and 95% confidence intervals (95% CIs) were computed. The surface under the cumulative ranking curve (SUCRA) was used for ranking the dietary approaches. Moreover, confidence was assessed using the CINeMA (confidence in network meta-analysis) framework. <i>Results</i>: Overall, 31 trials that compared eight diet interventions (Mediterranean, moderate-carbohydrate, low-carbohydrate, vegetarian, low-glycaemic index/load, low-fat, high-protein and control diets) and involved 3096 people were included. In terms of glycemic control, the Mediterranean diet yielded the best ranking (SUCRA: 88.15%), followed by the moderate-carbohydrate diet (SUCRA: 83.3%) and low-carbohydrate (LC) diet (SUCRA: 55.7%). In terms of anthropometric measurements, the LC diet (SUCRA: 74.6%) ranked first, followed by the moderate-carbohydrate diet (SUCRA: 68.7%) and vegetarian diet (SUCRA: 57%). These results also showed that the differences in almost all dietary patterns regarding anthropometric measurements were mostly small and often trivial. <i>Conclusions</i>: In summary, the Mediterranean diet was the most efficient dietary intervention for the improvement of glycaemic control, and the LC diet obtained the highest score for anthropometric measurements in individuals with T2DM and concurrent overweight/obesity.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypobaric hypoxia causes oxidative stress and inflammatory responses and disrupts the gut microbiome and metabolome. In this study, we developed a synbiotic fermented whey beverage, combining kefir and Brassica rapa L. crude polysaccharides, to explore its protective effects against high-altitude induced injury in mice. The beverage, formulated with 0.8% (w/v) polysaccharides and kefir inoculation, demonstrated robust fermentation parameters and antioxidative capacity. When applied to a hypobaric hypoxia mouse model, the synbiotic fermented whey significantly reduced oxidation and protected the intestinal barrier by lowering inflammation, protecting the intestinal structure, increasing goblet cell counts, and reducing apoptosis. It also modulated the gut microbiota, enriching beneficial taxa as Intestinimonas and Butyricicoccaceae, while reducing harmful ones like Marvinbryantia and Proteus, and enhancing short-chain fatty acid (SCFA) production. Notably, the beverage increased berberine and nicotinic acid levels, activating the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway and influencing nicotinate and nicotinamide metabolites linked to the suppression of Marvinbryantia, thereby alleviating intestinal inflammation and barrier damage. These effects contributed to the alleviation of hypoxia-induced intestinal damage in mice. This study highlights the potential of synbiotics and whey fermentation in novel nutritional interventions in high altitude environments.
{"title":"<i>Brassica rapa</i> L. crude polysaccharide meditated synbiotic fermented whey beverage ameliorates hypobaric hypoxia induced intestinal damage.","authors":"Yuanlin Niu, Tingting Zhao, Zhenjiang Liu, Diantong Li, Dongxu Wen, Bin Li, Xiaodan Huang","doi":"10.1039/d4fo04667f","DOIUrl":"https://doi.org/10.1039/d4fo04667f","url":null,"abstract":"<p><p>Hypobaric hypoxia causes oxidative stress and inflammatory responses and disrupts the gut microbiome and metabolome. In this study, we developed a synbiotic fermented whey beverage, combining kefir and <i>Brassica rapa</i> L. crude polysaccharides, to explore its protective effects against high-altitude induced injury in mice. The beverage, formulated with 0.8% (w/v) polysaccharides and kefir inoculation, demonstrated robust fermentation parameters and antioxidative capacity. When applied to a hypobaric hypoxia mouse model, the synbiotic fermented whey significantly reduced oxidation and protected the intestinal barrier by lowering inflammation, protecting the intestinal structure, increasing goblet cell counts, and reducing apoptosis. It also modulated the gut microbiota, enriching beneficial taxa as <i>Intestinimonas</i> and <i>Butyricicoccaceae</i>, while reducing harmful ones like <i>Marvinbryantia</i> and <i>Proteus</i>, and enhancing short-chain fatty acid (SCFA) production. Notably, the beverage increased berberine and nicotinic acid levels, activating the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway and influencing nicotinate and nicotinamide metabolites linked to the suppression of <i>Marvinbryantia</i>, thereby alleviating intestinal inflammation and barrier damage. These effects contributed to the alleviation of hypoxia-induced intestinal damage in mice. This study highlights the potential of synbiotics and whey fermentation in novel nutritional interventions in high altitude environments.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study assesses the transformation and stability of polyphenols, sulforaphane, and indoles in a fermented beverage made from broccoli leaves during in vitro gastrointestinal digestion (GID). This process was simulated using a dialysis membrane to assess intestinal absorption. The total phenolic compounds (TPC) and antioxidant TEAC assays showed an increase in phytochemical content due to the GID process. The higher TPC and antioxidant activity observed after digestion was likely due to the enzymatic transformation of polyphenols in mildly alkaline conditions. Individual phytochemical analysis revealed that hydroxycinnamic acids, particularly 3CQa, remained stable initially but then decreased significantly during intestinal digestion. Acylated flavonoids exhibited a decrease during intestinal digestion, while deacylated flavonoids initially decreased before stabilising. This indicated the occurrence of enzymatic hydrolysis of more structurally complex flavonoids to glycosylated flavonoids such as kaempferol-3,7-diglucoside, and kaempferol-3-sophoroside-7-glucoside. Consequently, deacylated flavonoids were highlighted for their high bioaccessibility rate after in vitro GID. Glucosinolate-hydrolysis products, including sulforaphane and indoles, exhibited a general decrease during digestion, with sulforaphane showing 51% bioaccessibility. The study highlights the dialysed in vitro GID process, which affects the release and transformation of bioactive compounds, potentially increasing their bioaccessibility and the subsequent health benefits of the lactofermented beverage made from broccoli leaves.
{"title":"Bioaccessibility and unravelling of polyphenols, sulforaphane, and indoles biotransformation after <i>in vitro</i> gastrointestinal digestion of a novel lactofermented broccoli beverage.","authors":"José Ángel Salas-Millán, Encarna Aguayo","doi":"10.1039/d4fo03528c","DOIUrl":"https://doi.org/10.1039/d4fo03528c","url":null,"abstract":"<p><p>This study assesses the transformation and stability of polyphenols, sulforaphane, and indoles in a fermented beverage made from broccoli leaves during <i>in vitro</i> gastrointestinal digestion (GID). This process was simulated using a dialysis membrane to assess intestinal absorption. The total phenolic compounds (TPC) and antioxidant TEAC assays showed an increase in phytochemical content due to the GID process. The higher TPC and antioxidant activity observed after digestion was likely due to the enzymatic transformation of polyphenols in mildly alkaline conditions. Individual phytochemical analysis revealed that hydroxycinnamic acids, particularly 3CQa, remained stable initially but then decreased significantly during intestinal digestion. Acylated flavonoids exhibited a decrease during intestinal digestion, while deacylated flavonoids initially decreased before stabilising. This indicated the occurrence of enzymatic hydrolysis of more structurally complex flavonoids to glycosylated flavonoids such as kaempferol-3,7-diglucoside, and kaempferol-3-sophoroside-7-glucoside. Consequently, deacylated flavonoids were highlighted for their high bioaccessibility rate after <i>in vitro</i> GID. Glucosinolate-hydrolysis products, including sulforaphane and indoles, exhibited a general decrease during digestion, with sulforaphane showing 51% bioaccessibility. The study highlights the dialysed <i>in vitro</i> GID process, which affects the release and transformation of bioactive compounds, potentially increasing their bioaccessibility and the subsequent health benefits of the lactofermented beverage made from broccoli leaves.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaofeng Cen, Wei Wang, Siyan Hong, Qin Wang, Na Wang, Ling Mo, Jingjing Li, Jingwen Li
Vanillic acid (VA) is a natural phenolic acid compound that is widely found in various foods and medicinal plants, with a remarkable antifibrotic effect observed in animal studies, but its exact antifibrotic mechanism remains unclear. Herein, hepatic function, fibrotic index, and histopathological, microbiome, and metabolomic methods were used to investigate the potential mechanisms behind the improvement effect of vanillic acid against thioacetamide (TAA)-induced liver fibrosis in mice. Our results showed that VA reversed TAA-induced liver fibrosis manifested a decrease in collagen fiber deposition, serum transaminase, serum hepatic fibrotic index, and liver inflammation indicator levels. When analyzed, TAA injection mainly increased the abundance of Akkermansia and Roseburia and significantly reduced the abundance of Anaerotruncus. VA reversed these changes back to normal levels to varying degrees. Metabolomic profiling demonstrated that VA treatment was efficacious in modulating several key liver metabolites involved in neuroactive ligand-receptor interaction, prolactin signaling pathway, estrogen signaling pathway, and glutathione metabolism. Conclusively, VA may ameliorate liver damage and suppress the fibrogenesis caused by thioacetamide by correcting intestinal microbiota disorders and promoting normal hepatic metabolism. This research provides a novel perspective on vanillic acid as a dietary supplement for hepatic fibrosis improvement.
{"title":"Integrated microbiome and metabolomic analyses revealed the antifibrotic effect of vanillic acid on thioacetamide-induced liver fibrosis in mice.","authors":"Xiaofeng Cen, Wei Wang, Siyan Hong, Qin Wang, Na Wang, Ling Mo, Jingjing Li, Jingwen Li","doi":"10.1039/d4fo02309a","DOIUrl":"10.1039/d4fo02309a","url":null,"abstract":"<p><p>Vanillic acid (VA) is a natural phenolic acid compound that is widely found in various foods and medicinal plants, with a remarkable antifibrotic effect observed in animal studies, but its exact antifibrotic mechanism remains unclear. Herein, hepatic function, fibrotic index, and histopathological, microbiome, and metabolomic methods were used to investigate the potential mechanisms behind the improvement effect of vanillic acid against thioacetamide (TAA)-induced liver fibrosis in mice. Our results showed that VA reversed TAA-induced liver fibrosis manifested a decrease in collagen fiber deposition, serum transaminase, serum hepatic fibrotic index, and liver inflammation indicator levels. When analyzed, TAA injection mainly increased the abundance of <i>Akkermansia</i> and <i>Roseburia</i> and significantly reduced the abundance of <i>Anaerotruncus</i>. VA reversed these changes back to normal levels to varying degrees. Metabolomic profiling demonstrated that VA treatment was efficacious in modulating several key liver metabolites involved in neuroactive ligand-receptor interaction, prolactin signaling pathway, estrogen signaling pathway, and glutathione metabolism. Conclusively, VA may ameliorate liver damage and suppress the fibrogenesis caused by thioacetamide by correcting intestinal microbiota disorders and promoting normal hepatic metabolism. This research provides a novel perspective on vanillic acid as a dietary supplement for hepatic fibrosis improvement.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Ai, Yun Niu, Yingrun Fan, Xuefeng Wang, Guowan Su, Mouming Zhao, Jiangping Fan
This study aimed to obtain umami peptides from Yanjin black bone chicken and to investigate the formation mechanism of umami taste. The umami peptides were purified from the enzymatic hydrolysate of chicken using ultrafiltration (UF), gel filtration chromatography (GFC), and reversed-phase high-performance liquid chromatography (RP-HPLC). Potential novel umami peptides were then identified by nano-scale liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS). Based on the predictions of iUmami-SCM and BIOPEP-UWM databases, five umami peptides (EELK, EEEIK, EELMK, LEEEIK, DELDKYS) with high umami scores were synthesized. Sensory evaluation revealed that these umami peptides exhibited a threshold ranging from 0.12 mg mL-1 to 0.36 mg mL-1. Circular dichroism (CD) analysis indicated the presence of β-sheet structures in the umami peptides that could be associated with taste formation. In addition, molecular docking and molecular dynamics (MD) were employed to investigate the binding mechanisms between umami peptides and the umami receptor T1R1/T1R3. The findings reveal that Lys155, Arg255, and Gln250 of T1R1/T1R3 potentially play critical roles in umami peptide binding. Taken together, our results lay a foundation for researching flavor substances and for developing flavor products from Yanjin black bone chicken.
{"title":"Identification and taste characteristics of novel umami peptides from Yanjin black bone chicken hydrolysates and their binding mechanism with umami receptor.","authors":"Yuanyuan Ai, Yun Niu, Yingrun Fan, Xuefeng Wang, Guowan Su, Mouming Zhao, Jiangping Fan","doi":"10.1039/d4fo02958e","DOIUrl":"https://doi.org/10.1039/d4fo02958e","url":null,"abstract":"<p><p>This study aimed to obtain umami peptides from Yanjin black bone chicken and to investigate the formation mechanism of umami taste. The umami peptides were purified from the enzymatic hydrolysate of chicken using ultrafiltration (UF), gel filtration chromatography (GFC), and reversed-phase high-performance liquid chromatography (RP-HPLC). Potential novel umami peptides were then identified by nano-scale liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS). Based on the predictions of iUmami-SCM and BIOPEP-UWM databases, five umami peptides (EELK, EEEIK, EELMK, LEEEIK, DELDKYS) with high umami scores were synthesized. Sensory evaluation revealed that these umami peptides exhibited a threshold ranging from 0.12 mg mL<sup>-1</sup> to 0.36 mg mL<sup>-1</sup>. Circular dichroism (CD) analysis indicated the presence of β-sheet structures in the umami peptides that could be associated with taste formation. In addition, molecular docking and molecular dynamics (MD) were employed to investigate the binding mechanisms between umami peptides and the umami receptor T1R1/T1R3. The findings reveal that Lys155, Arg255, and Gln250 of T1R1/T1R3 potentially play critical roles in umami peptide binding. Taken together, our results lay a foundation for researching flavor substances and for developing flavor products from Yanjin black bone chicken.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiguo Li, Mengyu Li, Xuexun Fang, Dahai Yu, Xin Hu
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. Lactobacillus johnsonii (L. johnsonii) is a potential anti-inflammatory bacterium, and compared to other probiotic Lactobacillus species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary L. johnsonii exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of L. johnsonii in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.
{"title":"Dietary <i>Lactobacillus johnsonii</i>-derived extracellular vesicles ameliorate acute colitis by regulating gut microbiota and maintaining intestinal barrier homeostasis.","authors":"Zhiguo Li, Mengyu Li, Xuexun Fang, Dahai Yu, Xin Hu","doi":"10.1039/d4fo04194a","DOIUrl":"10.1039/d4fo04194a","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. <i>Lactobacillus johnsonii</i> (<i>L. johnsonii</i>) is a potential anti-inflammatory bacterium, and compared to other probiotic <i>Lactobacillus</i> species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary <i>L. johnsonii</i> exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of <i>L. johnsonii</i> in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}