Enhanced structural health monitoring of ageing Pratt truss bridges: a combined approach of static and dynamic measurements

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-09-03 DOI:10.1007/s13349-024-00850-5
Anis Shafiqah Azhar, Sakhiah Abdul Kudus, Adiza Jamadin, Shaiful Amir Leman
{"title":"Enhanced structural health monitoring of ageing Pratt truss bridges: a combined approach of static and dynamic measurements","authors":"Anis Shafiqah Azhar, Sakhiah Abdul Kudus, Adiza Jamadin, Shaiful Amir Leman","doi":"10.1007/s13349-024-00850-5","DOIUrl":null,"url":null,"abstract":"<p>The application of SHM has been broadened to the issues of preserving existing bridges, which are subjected to many years of usage and exposure to environmental factors. This paper aims to demonstrate the effectiveness of SHM in the maintenance and management of ageing structures, specifically a Pratt-truss steel bridge in Malaysia. The research combines static and dynamic methodologies to describe the ancient bridge’s serviceability. Operational modal analysis and FE analysis were first used to evaluate the structure's inherent frequencies and mode shapes, followed by a successful sensitivity-based model updating method. Next, static measurements were automated using displacement and strain data to evaluate the bridge’s condition. According to the study, the first four crucial bending and torsion modes for the ageing steel truss bridge occur between 4 and 29 Hz. Since the two approaches yield different MAC values and frequencies, employing a sensitivity analysis and model update procedure has become necessary. The frequency reference generated with EN1991-2:2003 bridge frequency constraints was then used to determine the bridge’s integrity, concluding that the bridge is safe and functional. Finally, the static analysis findings showed that the bridge is in a safe service condition regarding its deflection limit and strain limit.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"27 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00850-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The application of SHM has been broadened to the issues of preserving existing bridges, which are subjected to many years of usage and exposure to environmental factors. This paper aims to demonstrate the effectiveness of SHM in the maintenance and management of ageing structures, specifically a Pratt-truss steel bridge in Malaysia. The research combines static and dynamic methodologies to describe the ancient bridge’s serviceability. Operational modal analysis and FE analysis were first used to evaluate the structure's inherent frequencies and mode shapes, followed by a successful sensitivity-based model updating method. Next, static measurements were automated using displacement and strain data to evaluate the bridge’s condition. According to the study, the first four crucial bending and torsion modes for the ageing steel truss bridge occur between 4 and 29 Hz. Since the two approaches yield different MAC values and frequencies, employing a sensitivity analysis and model update procedure has become necessary. The frequency reference generated with EN1991-2:2003 bridge frequency constraints was then used to determine the bridge’s integrity, concluding that the bridge is safe and functional. Finally, the static analysis findings showed that the bridge is in a safe service condition regarding its deflection limit and strain limit.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加强老化普拉特桁架桥的结构健康监测:静态和动态测量相结合的方法
SHM 的应用范围已扩大到现有桥梁的维护问题,这些桥梁已使用多年,并暴露在环境因素中。本文旨在展示 SHM 在老化结构维护和管理中的有效性,特别是马来西亚的一座普拉特桁架钢桥。研究结合了静态和动态方法来描述古桥的适用性。首先使用运行模态分析和 FE 分析来评估结构的固有频率和模态振型,然后采用基于灵敏度的模型更新方法。接下来,利用位移和应变数据自动进行静态测量,以评估桥梁的状况。研究结果表明,老化钢桁架桥的前四个关键弯曲和扭转模态发生在 4 到 29 Hz 之间。由于两种方法产生的 MAC 值和频率不同,因此有必要采用敏感性分析和模型更新程序。然后,使用 EN1991-2:2003 桥梁频率约束条件生成的频率参考值来确定桥梁的完整性,得出的结论是桥梁是安全和正常的。最后,静态分析结果表明,就其挠度极限和应变极限而言,桥梁处于安全的使用状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1