Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-09-12 DOI:10.1002/dac.5989
Deepak Bishla, Brijesh Kumar
{"title":"Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments","authors":"Deepak Bishla, Brijesh Kumar","doi":"10.1002/dac.5989","DOIUrl":null,"url":null,"abstract":"SummaryThe growth of software‐defined networking (SDN) enhances network strength and provides flexible routing, especially in heterogeneous environments. Hence, an efficient framework is required for recent networks. Recently, hybrid SDN with the restricted deployment of SDN switches has been integrated with a conventional network that provides improved communication performance compared to traditional SDN systems. However, the recent hybrid SDNs lack effective link protection and optimal routing when used with complex topologies. Hence, this study presents a novel deep learning–based hybridized multi‐stacked autoencoder with the duo‐directed gated recurrent unit (MSAE‐DDGRU) for automatic link failure prediction in hybrid SDN. Moreover, a multi‐objective zebra optimizer (MO‐ZeO) is introduced to perform optimal routing by solving multiple routing constraints. The developed study is processed with the Python platform, and publicly available GEANT topology is utilized for the whole experimental process. Various assessment measures like accuracy, precision, sensitivity, packet loss, cost, maximum link utilization (MLU), policy violation rates (PVRs), packet delivery ratio (PDR), and delay are analyzed and compared with existing studies. The developed technique achieved an accuracy of 96%, precision of 92%, sensitivity of 93%, PDR of 99.4%, PVR of 0.0005, and delay of 1.2 s are obtained.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5989","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryThe growth of software‐defined networking (SDN) enhances network strength and provides flexible routing, especially in heterogeneous environments. Hence, an efficient framework is required for recent networks. Recently, hybrid SDN with the restricted deployment of SDN switches has been integrated with a conventional network that provides improved communication performance compared to traditional SDN systems. However, the recent hybrid SDNs lack effective link protection and optimal routing when used with complex topologies. Hence, this study presents a novel deep learning–based hybridized multi‐stacked autoencoder with the duo‐directed gated recurrent unit (MSAE‐DDGRU) for automatic link failure prediction in hybrid SDN. Moreover, a multi‐objective zebra optimizer (MO‐ZeO) is introduced to perform optimal routing by solving multiple routing constraints. The developed study is processed with the Python platform, and publicly available GEANT topology is utilized for the whole experimental process. Various assessment measures like accuracy, precision, sensitivity, packet loss, cost, maximum link utilization (MLU), policy violation rates (PVRs), packet delivery ratio (PDR), and delay are analyzed and compared with existing studies. The developed technique achieved an accuracy of 96%, precision of 92%, sensitivity of 93%, PDR of 99.4%, PVR of 0.0005, and delay of 1.2 s are obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在异构环境下利用高级深度学习和多目标优化框架提高混合 SDN 的性能
摘要软件定义网络(SDN)的发展增强了网络强度,提供了灵活的路由选择,尤其是在异构环境中。因此,最近的网络需要一个高效的框架。最近,通过限制 SDN 交换机的部署,混合 SDN 与传统网络实现了整合,与传统 SDN 系统相比,混合 SDN 提高了通信性能。然而,最近的混合 SDN 在使用复杂拓扑时缺乏有效的链路保护和最佳路由选择。因此,本研究提出了一种基于深度学习的新型混合多堆栈自动编码器与双向门控递归单元(MSAE-DDGRU),用于混合 SDN 中的自动链路故障预测。此外,还引入了多目标斑马优化器(MO-ZeO),通过解决多个路由约束条件来执行最优路由。所开发的研究使用 Python 平台进行处理,整个实验过程使用了公开可用的 GEANT 拓扑。分析了各种评估指标,如准确度、精确度、灵敏度、丢包率、成本、最大链路利用率(MLU)、策略违反率(PVR)、数据包交付率(PDR)和延迟,并与现有研究进行了比较。所开发的技术获得了 96% 的准确度、92% 的精确度、93% 的灵敏度、99.4% 的 PDR、0.0005 的 PVR 和 1.2 秒的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN Dual‐port circular patch antenna array: Enhancing gain and minimizing cross‐polarization for mm‐wave 5G networks Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1