Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu
{"title":"FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare","authors":"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu","doi":"10.1016/j.patter.2024.101059","DOIUrl":null,"url":null,"abstract":"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"195 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.