Avoiding common machine learning pitfalls

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-08-28 DOI:10.1016/j.patter.2024.101046
Michael A. Lones
{"title":"Avoiding common machine learning pitfalls","authors":"Michael A. Lones","doi":"10.1016/j.patter.2024.101046","DOIUrl":null,"url":null,"abstract":"<p>Mistakes in machine learning practice are commonplace and can result in loss of confidence in the findings and products of machine learning. This tutorial outlines common mistakes that occur when using machine learning and what can be done to avoid them. While it should be accessible to anyone with a basic understanding of machine learning techniques, it focuses on issues that are of particular concern within academic research, such as the need to make rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mistakes in machine learning practice are commonplace and can result in loss of confidence in the findings and products of machine learning. This tutorial outlines common mistakes that occur when using machine learning and what can be done to avoid them. While it should be accessible to anyone with a basic understanding of machine learning techniques, it focuses on issues that are of particular concern within academic research, such as the need to make rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
避免常见的机器学习陷阱
机器学习实践中的错误屡见不鲜,可能导致人们对机器学习的发现和产品失去信心。本教程概述了使用机器学习时常见的错误,以及如何避免这些错误。虽然任何对机器学习技术有基本了解的人都可以阅读,但它侧重于学术研究中特别关注的问题,例如进行严格比较和得出有效结论的必要性。本书涵盖了机器学习过程的五个阶段:建立模型前的准备工作、如何可靠地建立模型、如何稳健地评估模型、如何公平地比较模型以及如何报告结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations Balancing innovation and integrity in peer review The stacking cell puzzle To democratize research with sensitive data, we should make synthetic data more accessible FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1