Shima Ghaffari, Marzieh Golshan, Kiyumars Jalili, Mehdi Salami-Kalajahi
{"title":"Anti-Inflammatory Drugs-Modified Poly(2-Hydroxyethyl Methacrylate) Particles as Anticancer Drug Carriers","authors":"Shima Ghaffari, Marzieh Golshan, Kiyumars Jalili, Mehdi Salami-Kalajahi","doi":"10.1002/mame.202400147","DOIUrl":null,"url":null,"abstract":"<p>In this work, 2-hydroxyethyl methacrylate (HEMA) is modified by ibuprofen and diclofenac as anti-inflammatory drugs to synthesize ibuprofen-HEMA and diclofenac-HEMA monomers. Then, poly(ibuprofen-HEMA-<i>co</i>-HEMA) (PIHH), poly(diclofenac-HEMA-<i>co</i>-HEMA) (PDHH), and poly(2-hydroxyethyl methacrylate) (PHEMA) particles are prepared by distillation precipitation polymerization. The morphology and size of the particles are investigated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FE-SEM). It is observed that all particles are spherical and with sizes of 298.3 nm for PHEMA, 178.8 nm for PDHH, and 85.2 nm for PIHH, respectively. Doxorubicin drug is loaded into the prepared particles and the drug release behavior is investigated for all the particles at two different pH values of 7.4 and 5.3. The release of the drug in acidic pH is higher due to the better solubility of DOX in acidic environment and the faster release of DOX molecules from nanocarriers. The toxicity of particles is also investigated and it is observed that by loading the drug into the PHEMA particles, the release of the drug causes fewer toxic effects than in the free state (drug without any nanocarrier), and the presence of ibuprofen and diclofenac in the particles, that is, PIHH and PDHH, led to a significant reduction in the cytotoxicity.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, 2-hydroxyethyl methacrylate (HEMA) is modified by ibuprofen and diclofenac as anti-inflammatory drugs to synthesize ibuprofen-HEMA and diclofenac-HEMA monomers. Then, poly(ibuprofen-HEMA-co-HEMA) (PIHH), poly(diclofenac-HEMA-co-HEMA) (PDHH), and poly(2-hydroxyethyl methacrylate) (PHEMA) particles are prepared by distillation precipitation polymerization. The morphology and size of the particles are investigated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FE-SEM). It is observed that all particles are spherical and with sizes of 298.3 nm for PHEMA, 178.8 nm for PDHH, and 85.2 nm for PIHH, respectively. Doxorubicin drug is loaded into the prepared particles and the drug release behavior is investigated for all the particles at two different pH values of 7.4 and 5.3. The release of the drug in acidic pH is higher due to the better solubility of DOX in acidic environment and the faster release of DOX molecules from nanocarriers. The toxicity of particles is also investigated and it is observed that by loading the drug into the PHEMA particles, the release of the drug causes fewer toxic effects than in the free state (drug without any nanocarrier), and the presence of ibuprofen and diclofenac in the particles, that is, PIHH and PDHH, led to a significant reduction in the cytotoxicity.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, and processing of advanced polymeric materials.