Longitudinal characterization of sub-retinal pigment epithelium deposit formation in a primary porcine tissue culture model of dry age-related macular degeneration

IF 4.6 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy-Methods & Clinical Development Pub Date : 2024-08-31 DOI:10.1016/j.omtm.2024.101331
Erika M. Shaw, Alexander J. Tate, Ramesh Periasamy, Daniel M. Lipinski
{"title":"Longitudinal characterization of sub-retinal pigment epithelium deposit formation in a primary porcine tissue culture model of dry age-related macular degeneration","authors":"Erika M. Shaw, Alexander J. Tate, Ramesh Periasamy, Daniel M. Lipinski","doi":"10.1016/j.omtm.2024.101331","DOIUrl":null,"url":null,"abstract":"Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch’s membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled In this study, we further characterize a “drusen-in-a-dish” primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch’s membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled In this study, we further characterize a “drusen-in-a-dish” primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干性老年性黄斑变性原代猪组织培养模型中视网膜下色素上皮沉积形成的纵向特征描述
老年性黄斑变性(AMD)影响着全球数百万人,是导致老年人失明的主要原因之一。在干性黄斑变性中,称为色素沉着的脂蛋白沉积物积聚在视网膜色素上皮(RPE)和布鲁氏膜之间,导致向神经视网膜输送氧气和营养物质的功能受损,上覆的感光细胞发生变性。在本研究中,我们进一步描述了 "盘中色素 "原代猪 RPE 模型系统的特征,方法是利用重要的脂质染色来监测在多孔透孔膜上培养的单层细胞中 RPE 下沉积物随时间的变化。我们利用半自动图像分析管道首次证明,随着时间的推移,RPE 下沉积物的数量和大小会逐渐显著增加,并证实在培养过程中生长的 RPE 下沉积物对人类葡萄肿中的多种已知成分免疫呈阳性反应。因此,我们认为 "盘中核黄素 "细胞培养模型是一种高通量、成本可控的动物模型替代品,可用于研究核黄素积累的病理生物学,并可作为筛选治疗干性 AMD 的新型疗法的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy-Methods & Clinical Development
Molecular Therapy-Methods & Clinical Development Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.90
自引率
4.30%
发文量
163
审稿时长
12 weeks
期刊介绍: The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella. Topics of particular interest within the journal''s scope include: Gene vector engineering and production, Methods for targeted genome editing and engineering, Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells, Methods for gene and cell vector delivery, Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine, Analysis of gene and cell vector biodistribution and tracking, Pharmacology/toxicology studies of new and next-generation vectors, Methods for cell isolation, engineering, culture, expansion, and transplantation, Cell processing, storage, and banking for therapeutic application, Preclinical and QC/QA assay development, Translational and clinical scale-up and Good Manufacturing procedures and process development, Clinical protocol development, Computational and bioinformatic methods for analysis, modeling, or visualization of biological data, Negotiating the regulatory approval process and obtaining such approval for clinical trials.
期刊最新文献
What's in a word? Defining "gene therapy medicines". Comparison and cross-validation of long-read and short-read target-enrichment sequencing methods to assess AAV vector integration into host genome. Toward a translational gene therapy for mucolipidosis IV. Identification of a novel neutralization epitope in rhesus AAVs. AAVolve: Concatenated long-read deep sequencing enables whole capsid tracking during shuffled AAV library selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1