Claim Prediction and Premium Pricing for Telematics Auto Insurance Data Using Poisson Regression with Lasso Regularisation

IF 2 Q2 BUSINESS, FINANCE Risks Pub Date : 2024-08-28 DOI:10.3390/risks12090137
Farha Usman, Jennifer S. K. Chan, Udi E. Makov, Yang Wang, Alice X. D. Dong
{"title":"Claim Prediction and Premium Pricing for Telematics Auto Insurance Data Using Poisson Regression with Lasso Regularisation","authors":"Farha Usman, Jennifer S. K. Chan, Udi E. Makov, Yang Wang, Alice X. D. Dong","doi":"10.3390/risks12090137","DOIUrl":null,"url":null,"abstract":"We leverage telematics data on driving behavior variables to assess driver risk and predict future insurance claims in a case study utilising a representative telematics sample. In the study, we aim to categorise drivers according to their driving habits and establish premiums that accurately reflect their driving risk. To accomplish our goal, we employ the two-stage Poisson model, the Poisson mixture model, and the Zero-Inflated Poisson model to analyse the telematics data. These models are further enhanced by incorporating regularisation techniques such as lasso, adaptive lasso, elastic net, and adaptive elastic net. Our empirical findings demonstrate that the Poisson mixture model with the adaptive lasso regularisation outperforms other models. Based on predicted claim frequencies and drivers’ risk groups, we introduce a novel usage-based experience rating premium pricing method. This method enables more frequent premium updates based on recent driving behaviour, providing instant rewards and incentivising responsible driving practices. Consequently, it helps to alleviate cross-subsidization among risky drivers and improves the accuracy of loss reserving for auto insurance companies.","PeriodicalId":21282,"journal":{"name":"Risks","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12090137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We leverage telematics data on driving behavior variables to assess driver risk and predict future insurance claims in a case study utilising a representative telematics sample. In the study, we aim to categorise drivers according to their driving habits and establish premiums that accurately reflect their driving risk. To accomplish our goal, we employ the two-stage Poisson model, the Poisson mixture model, and the Zero-Inflated Poisson model to analyse the telematics data. These models are further enhanced by incorporating regularisation techniques such as lasso, adaptive lasso, elastic net, and adaptive elastic net. Our empirical findings demonstrate that the Poisson mixture model with the adaptive lasso regularisation outperforms other models. Based on predicted claim frequencies and drivers’ risk groups, we introduce a novel usage-based experience rating premium pricing method. This method enables more frequent premium updates based on recent driving behaviour, providing instant rewards and incentivising responsible driving practices. Consequently, it helps to alleviate cross-subsidization among risky drivers and improves the accuracy of loss reserving for auto insurance companies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用泊松回归与拉索正则化实现车联网汽车保险数据的理赔预测和保费定价
在一项案例研究中,我们利用具有代表性的远程信息处理样本,利用远程信息处理数据中的驾驶行为变量来评估驾驶员风险并预测未来的保险理赔。在这项研究中,我们旨在根据驾驶员的驾驶习惯对其进行分类,并确定能准确反映其驾驶风险的保费。为了实现目标,我们采用了两阶段泊松模型、泊松混合模型和零膨胀泊松模型来分析远程信息处理数据。通过采用套索、自适应套索、弹性网和自适应弹性网等正则化技术,这些模型得到了进一步增强。我们的实证研究结果表明,采用自适应拉索正则化的泊松混合模型优于其他模型。根据预测的索赔频率和驾驶员的风险组别,我们引入了一种新颖的基于使用经验的保费定价方法。这种方法能根据驾驶员最近的驾驶行为更频繁地更新保费,提供即时奖励并激励负责任的驾驶行为。因此,它有助于减轻风险驾驶员之间的交叉补贴,提高汽车保险公司损失准备金的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
期刊最新文献
Funding Illiquidity Implied by S&P 500 Derivatives Dynamics of Foreign Exchange Futures Trading Volumes in Thailand Automated Machine Learning and Asset Pricing What Drives Banks to Provide Green Loans? Corporate Governance and Ownership Structure Perspectives of Vietnamese Listed Banks Trends and Risks in Mergers and Acquisitions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1