Adaptive Incentive-Compatible Navigational Route Recommendations in Urban Transportation Networks

Ya-Ting Yang, Haozhe Lei, Quanyan Zhu
{"title":"Adaptive Incentive-Compatible Navigational Route Recommendations in Urban Transportation Networks","authors":"Ya-Ting Yang, Haozhe Lei, Quanyan Zhu","doi":"arxiv-2409.00236","DOIUrl":null,"url":null,"abstract":"In urban transportation environments, drivers often encounter various path\n(route) options when navigating to their destinations. This emphasizes the\nimportance of navigational recommendation systems (NRS), which simplify\ndecision-making and reduce travel time for users while alleviating potential\ncongestion for broader societal benefits. However, recommending the shortest\npath may cause the flash crowd effect, and system-optimal routes may not always\nalign the preferences of human users, leading to non-compliance issues. It is\nalso worth noting that universal NRS adoption is impractical. Therefore, in\nthis study, we aim to address these challenges by proposing an incentive\ncompatibility recommendation system from a game-theoretic perspective and\naccounts for non-user drivers with their own path choice behaviors.\nAdditionally, recognizing the dynamic nature of traffic conditions and the\nunpredictability of accidents, this work introduces a dynamic NRS with parallel\nand random update schemes, enabling users to safely adapt to changing traffic\nconditions while ensuring optimal total travel time costs. The numerical\nstudies indicate that the proposed parallel update scheme exhibits greater\neffectiveness in terms of user compliance, travel time reduction, and\nadaptability to the environment.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In urban transportation environments, drivers often encounter various path (route) options when navigating to their destinations. This emphasizes the importance of navigational recommendation systems (NRS), which simplify decision-making and reduce travel time for users while alleviating potential congestion for broader societal benefits. However, recommending the shortest path may cause the flash crowd effect, and system-optimal routes may not always align the preferences of human users, leading to non-compliance issues. It is also worth noting that universal NRS adoption is impractical. Therefore, in this study, we aim to address these challenges by proposing an incentive compatibility recommendation system from a game-theoretic perspective and accounts for non-user drivers with their own path choice behaviors. Additionally, recognizing the dynamic nature of traffic conditions and the unpredictability of accidents, this work introduces a dynamic NRS with parallel and random update schemes, enabling users to safely adapt to changing traffic conditions while ensuring optimal total travel time costs. The numerical studies indicate that the proposed parallel update scheme exhibits greater effectiveness in terms of user compliance, travel time reduction, and adaptability to the environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市交通网络中的自适应激励兼容导航路线建议
在城市交通环境中,驾驶员在导航前往目的地时经常会遇到各种路径(路线)选择。这就强调了导航推荐系统(NRS)的重要性,它可以简化决策过程,减少用户的旅行时间,同时缓解潜在的拥堵,从而带来更广泛的社会效益。然而,推荐最短路径可能会造成 "闪光灯拥挤效应",而且系统推荐的最优路线可能并不总是符合人类用户的偏好,从而导致违规问题。此外,值得注意的是,普遍采用 NRS 是不切实际的。此外,考虑到交通状况的动态性和事故的不可预测性,本研究引入了具有并行随机更新方案的动态 NRS,使用户能够安全地适应不断变化的交通状况,同时确保最优的总旅行时间成本。数值研究表明,所提出的并行更新方案在用户遵从性、旅行时间缩短和环境适应性等方面表现出极大的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1