GPU-Accelerated Counterfactual Regret Minimization

Juho Kim
{"title":"GPU-Accelerated Counterfactual Regret Minimization","authors":"Juho Kim","doi":"arxiv-2408.14778","DOIUrl":null,"url":null,"abstract":"Counterfactual regret minimization (CFR) is a family of algorithms of\nno-regret learning dynamics capable of solving large-scale imperfect\ninformation games. There has been a notable lack of work on making CFR more\ncomputationally efficient. We propose implementing this algorithm as a series\nof dense and sparse matrix and vector operations, thereby making it highly\nparallelizable for a graphical processing unit. Our experiments show that our\nimplementation performs up to about 352.5 times faster than OpenSpiel's Python\nimplementation and up to about 22.2 times faster than OpenSpiel's C++\nimplementation and the speedup becomes more pronounced as the size of the game\nbeing solved grows.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Counterfactual regret minimization (CFR) is a family of algorithms of no-regret learning dynamics capable of solving large-scale imperfect information games. There has been a notable lack of work on making CFR more computationally efficient. We propose implementing this algorithm as a series of dense and sparse matrix and vector operations, thereby making it highly parallelizable for a graphical processing unit. Our experiments show that our implementation performs up to about 352.5 times faster than OpenSpiel's Python implementation and up to about 22.2 times faster than OpenSpiel's C++ implementation and the speedup becomes more pronounced as the size of the game being solved grows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU 加速的反事实遗憾最小化
反事实遗憾最小化(CFR)是一种无遗憾学习动态算法,能够解决大规模的不完全信息博弈。在提高反事实遗憾最小化算法的计算效率方面,我们的研究明显不足。我们建议将该算法作为一系列密集和稀疏矩阵及向量运算来实现,从而使其在图形处理单元上具有高度可并行性。我们的实验表明,我们的实现比 OpenSpiel 的 Python 实现快约 352.5 倍,比 OpenSpiel 的 C++ 实现快约 22.2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1