Synthesis and transport properties of the brannerite-type oxides Na1-xV1-xMo1+xO6

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-08-23 DOI:10.1007/s11581-024-05791-z
Fedorov D.S., Buzlukov A.L., Maksimova L.G., Medvedeva N.I., Denisova T.A., Tyutyunik A.P., Korona D.V., Baklanova Ya.V., Arapova I.Yu., Zabolotskaya E.V., Solodovnikov S.F.
{"title":"Synthesis and transport properties of the brannerite-type oxides Na1-xV1-xMo1+xO6","authors":"Fedorov D.S., Buzlukov A.L., Maksimova L.G., Medvedeva N.I., Denisova T.A., Tyutyunik A.P., Korona D.V., Baklanova Ya.V., Arapova I.Yu., Zabolotskaya E.V., Solodovnikov S.F.","doi":"10.1007/s11581-024-05791-z","DOIUrl":null,"url":null,"abstract":"<p>Widespread commercialization of sodium-ion batteries (SIB) is limited by the shortcomings of existing electrode materials, so the search and testing of various sodium compounds suitable for SIB are relevant. This paper presents the results of a study of the sodium diffusion mechanisms in quasi-layered oxides Na<sub>1-<i>x</i></sub>V<sub>1-<i>x</i></sub>Mo<sub>1+<i>x</i></sub>O<sub>6</sub>, which are potentially promising for applications for SIB. A simple synthesis procedure has been developed, which makes it possible to obtain compounds in a wide range of compositions up to <i>x</i> = 0.2. To elucidate the mechanisms of sodium diffusion, we applied a comprehensive approach that combines material characterization at the “macro” (XRD, impedance spectroscopy) and “atomic-scale” levels (NMR, ab-initio calculations). Our results reveal rather fast sodium dynamics: Ionic conductivity reaches the values of 10<sup>–3</sup> S/cm at <i>T</i> &gt; 730 K. It has been found moreover that the diffusion mechanism changes with increasing temperature. At <i>T</i> &lt; 625 K, sodium motion occurs mainly along the crystallographic <i>b</i> axis due to atomic jumps with the shortest jump length ≈ 3.6 Å and activation energy <i>E</i><sub><i>a</i></sub> ~ 1 eV. With increasing temperature, another type of jumps along <i>a</i> axis (in the <i>ab</i> plane) with a jump length of ≈ 5 Å and a barrier value of 2 eV is also activated.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05791-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread commercialization of sodium-ion batteries (SIB) is limited by the shortcomings of existing electrode materials, so the search and testing of various sodium compounds suitable for SIB are relevant. This paper presents the results of a study of the sodium diffusion mechanisms in quasi-layered oxides Na1-xV1-xMo1+xO6, which are potentially promising for applications for SIB. A simple synthesis procedure has been developed, which makes it possible to obtain compounds in a wide range of compositions up to x = 0.2. To elucidate the mechanisms of sodium diffusion, we applied a comprehensive approach that combines material characterization at the “macro” (XRD, impedance spectroscopy) and “atomic-scale” levels (NMR, ab-initio calculations). Our results reveal rather fast sodium dynamics: Ionic conductivity reaches the values of 10–3 S/cm at T > 730 K. It has been found moreover that the diffusion mechanism changes with increasing temperature. At T < 625 K, sodium motion occurs mainly along the crystallographic b axis due to atomic jumps with the shortest jump length ≈ 3.6 Å and activation energy Ea ~ 1 eV. With increasing temperature, another type of jumps along a axis (in the ab plane) with a jump length of ≈ 5 Å and a barrier value of 2 eV is also activated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糠酸盐型氧化物 Na1-xV1-xMo1+xO6 的合成和传输特性
现有电极材料的缺陷限制了钠离子电池(SIB)的广泛商业化,因此寻找和测试适合 SIB 的各种钠化合物具有重要意义。本文介绍了钠在准层状氧化物 Na1-xV1-xMo1+xO6 中的扩散机制的研究结果,这些氧化物具有应用于 SIB 的潜在前景。研究人员开发了一种简单的合成程序,可以获得成分范围广泛的化合物,最高可达 x = 0.2。为了阐明钠的扩散机制,我们采用了一种综合方法,将 "宏观"(XRD、阻抗光谱)和 "原子尺度"(核磁共振、非线性计算)的材料表征结合起来。我们的研究结果表明,钠的动态变化相当快:在 730 K 时,离子导电率达到 10-3 S/cm。在 T < 625 K 时,钠主要沿晶体学 b 轴运动,这是由于原子跃迁造成的,最短跃迁长度 ≈ 3.6 Å,活化能 Ea ~ 1 eV。随着温度的升高,另一种沿 a 轴(在 ab 平面上)的跃迁也被激活,其跃迁长度≈ 5 Å,势垒值为 2 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Eco-inspired synthesis of ZnO/CuO nanocomposites using Phyllanthus niruri: unveiling superior photocatalytic, antibacterial efficacy against Escherichia coli and Staphylococcus aureus, and latent fingerprint studies Investigation of Sr doping effect on oxygen ion de-localization in Gd2Ti2O7 pyrochlore system and its influence on charge relaxation dynamics and ionic conductivity: as electrolyte for IT-SOFCs Structural, electrical, and electrochemical investigations on Cu2+ ion–conducting PVA/HPMC-based blend solid polymer electrolytes Solvent-engineered ZIF-67-derived cobalt-embedded carbon as polysulfide trapping host for high-stability Li–S battery Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1