Inquiring into a spectral concept in the physics classroom

Q3 Social Sciences Physics Education Pub Date : 2024-09-08 DOI:10.1088/1361-6552/ad744f
Russell Ng and Joonhyeong Park
{"title":"Inquiring into a spectral concept in the physics classroom","authors":"Russell Ng and Joonhyeong Park","doi":"10.1088/1361-6552/ad744f","DOIUrl":null,"url":null,"abstract":"We designed an inquiry activity to investigate the question ‘How transparent are transparent films and papers?’ Using an easily-replicable set up, we observed the effect of increasing the number of transparent films, thin papers and general papers between a light source and a light sensor. For each material, one sheet was added each time. The amount of light received was collected and graphed by a data logger. Our findings show that, as the number of sheets increases, the amount of light received at the receiver decreases. The general paper and thin paper stacks took 4 sheets and 10 sheets respectively to achieve negligible light transmittance. The transparent film stack did not achieve negligible light transmittance, but successive addition of sheets did lower transmittance. Evidently, transparent films are not perfectly transparent. Transparency (and opacity) is not a binary condition, but rather a continuum based on boundary conditions. The inquiry activity developed through this study, which investigates a spectrum of transparency in films and papers, may be useful for students to appreciate the spectral nature of the transparency concept across different materials.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad744f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

We designed an inquiry activity to investigate the question ‘How transparent are transparent films and papers?’ Using an easily-replicable set up, we observed the effect of increasing the number of transparent films, thin papers and general papers between a light source and a light sensor. For each material, one sheet was added each time. The amount of light received was collected and graphed by a data logger. Our findings show that, as the number of sheets increases, the amount of light received at the receiver decreases. The general paper and thin paper stacks took 4 sheets and 10 sheets respectively to achieve negligible light transmittance. The transparent film stack did not achieve negligible light transmittance, but successive addition of sheets did lower transmittance. Evidently, transparent films are not perfectly transparent. Transparency (and opacity) is not a binary condition, but rather a continuum based on boundary conditions. The inquiry activity developed through this study, which investigates a spectrum of transparency in films and papers, may be useful for students to appreciate the spectral nature of the transparency concept across different materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探究物理课堂中的光谱概念
我们设计了一个探究活动来研究 "透明薄膜和纸的透明度如何?我们利用一个易于复制的装置,观察了在光源和光传感器之间增加透明薄膜、薄纸和普通纸数量的效果。每种材料每次增加一张。数据记录器收集并显示接收到的光量。我们的研究结果表明,随着纸张数量的增加,接收器接收到的光量会减少。普通纸和薄纸分别需要 4 张和 10 张纸才能达到可忽略的透光率。透明薄膜堆叠的透光率没有达到可以忽略不计的程度,但连续增加纸张确实降低了透光率。可见,透明薄膜并非完全透明。透明度(和不透明度)不是二元条件,而是基于边界条件的连续体。本研究开发的探究活动调查了薄膜和纸张的透明度光谱,可能有助于学生理解不同材料的透明度概念的光谱性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Education
Physics Education Social Sciences-Education
CiteScore
1.50
自引率
0.00%
发文量
195
期刊介绍: Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.
期刊最新文献
Motion of a ball attached to a mass via a hole in a horizontal table Optical transmission and refraction at the atomic level LeviLabs: learning about sound through acoustic levitation Developing and implementing an Einsteinian science curriculum from years 3–10: A. Concepts, rationale and learning outcomes Gravitational music: a mathematical-musical model for the popularization of gravitational waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1