Weakening the Space Charge Layer Effect Through Tethered Anion Electrolyte and Piezoelectric Effect Toward Ultra-Stable Zinc Anode

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-12 DOI:10.1002/adma.202407390
Zhipeng Wen, Zuyang Hu, Xiangwen Wang, Yufei Zhang, Wencheng Du, Minghui Ye, Yongchao Tang, Xiaoqing Liu, Cheng Chao Li
{"title":"Weakening the Space Charge Layer Effect Through Tethered Anion Electrolyte and Piezoelectric Effect Toward Ultra-Stable Zinc Anode","authors":"Zhipeng Wen,&nbsp;Zuyang Hu,&nbsp;Xiangwen Wang,&nbsp;Yufei Zhang,&nbsp;Wencheng Du,&nbsp;Minghui Ye,&nbsp;Yongchao Tang,&nbsp;Xiaoqing Liu,&nbsp;Cheng Chao Li","doi":"10.1002/adma.202407390","DOIUrl":null,"url":null,"abstract":"<p>The space charge layer (SCL) dilemma, caused by mobile anion concentration gradient and the rapid consumption of cations, is the fundamental reason for the generation of zinc dendrites, especially under high-rate discharge conditions. To address the issue, a physical (PbTiO<sub>3</sub>)/chemical (AMPS-Zn) barrier is designed to construct stable zinc ion flow and disrupt the gradient of anion concentration by coupling the ferroelectric effect with tethered anion electrolyte. The ferroelectric materials PbTiO<sub>3</sub> with extreme-high piezoelectric constant can spontaneously generate an internal electric field to accelerate the movement of zinc ions, and the polyanionic polymer AMPS-Zn can repel mobile anions and disrupt the anions concentration gradient by tethering anions. Through numerical simulations and analyses, it is discovered that a high Zn<sup>2+</sup> transference number can effectively weaken the SCL, thus suppressing the occurrence of zinc dendrites and parasitic side reactions. Consequently, an asymmetric cell using the PbTiO<sub>3</sub>@Zn demonstrates a reversible plating/stripping performance for 2900 h, and an asymmetric cell reaches a state-of-the-art runtime of 3450 h with a high average Coulombic efficiency of 99.98%. Furthermore, the PbTiO<sub>3</sub>@Zn/I<sub>2</sub> battery demonstrated an impressive capacity retention rate of 84.0% over 65000 cycles by employing a slender Zn anode.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 44","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407390","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The space charge layer (SCL) dilemma, caused by mobile anion concentration gradient and the rapid consumption of cations, is the fundamental reason for the generation of zinc dendrites, especially under high-rate discharge conditions. To address the issue, a physical (PbTiO3)/chemical (AMPS-Zn) barrier is designed to construct stable zinc ion flow and disrupt the gradient of anion concentration by coupling the ferroelectric effect with tethered anion electrolyte. The ferroelectric materials PbTiO3 with extreme-high piezoelectric constant can spontaneously generate an internal electric field to accelerate the movement of zinc ions, and the polyanionic polymer AMPS-Zn can repel mobile anions and disrupt the anions concentration gradient by tethering anions. Through numerical simulations and analyses, it is discovered that a high Zn2+ transference number can effectively weaken the SCL, thus suppressing the occurrence of zinc dendrites and parasitic side reactions. Consequently, an asymmetric cell using the PbTiO3@Zn demonstrates a reversible plating/stripping performance for 2900 h, and an asymmetric cell reaches a state-of-the-art runtime of 3450 h with a high average Coulombic efficiency of 99.98%. Furthermore, the PbTiO3@Zn/I2 battery demonstrated an impressive capacity retention rate of 84.0% over 65000 cycles by employing a slender Zn anode.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过系留阴离子电解质和压电效应削弱空间电荷层效应,实现超稳定锌阳极
移动阴离子浓度梯度和阳离子快速消耗所导致的空间电荷层(SCL)困境是产生锌枝晶的根本原因,尤其是在高速率放电条件下。为解决这一问题,我们设计了一种物理(PbTiO3)/化学(AMPS-Zn)屏障,通过铁电效应与系留阴离子电解质的耦合,构建稳定的锌离子流并破坏阴离子浓度梯度。具有极高压电常数的铁电材料 PbTiO3 可以自发产生内部电场,加速锌离子的运动,而聚阴离子聚合物 AMPS-Zn 则可以排斥移动的阴离子,并通过系留阴离子破坏阴离子浓度梯度。通过数值模拟和分析发现,高 Zn2+ 转移数可以有效削弱 SCL,从而抑制锌枝晶和寄生副反应的发生。因此,使用 PbTiO3@Zn 的非对称电池在 2900 小时内表现出可逆的电镀/剥离性能,非对称电池达到最先进的 3450 小时运行时间,平均库仑效率高达 99.98%。此外,通过采用细长的锌阳极,PbTiO3@Zn/I2 电池在 65000 次循环中显示出 84.0% 的惊人容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Doping Ti into RuO2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction Magnetic-Electrical Synergetic Control of Non-Volatile States in Bilayer Graphene-CrOCl Heterostructures Macro-Superlubricity Induced by Tribocatalysis of High-Entropy Ceramics Grain-Boundary Elimination via Liquid Medium Annealing toward High-Efficiency Sb2Se3 Solar Cells Conformation Influences Biological Fates of Peptide-Based Nanofilaments by Modulating Protein Adsorption and Interfilament Entanglement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1