Ruidong Jia, Chenchen Niu, Xuelian Liu, Kai Xu, Shengheng Tan
{"title":"Compositional effects on the growth of diopside crystals in the simulated high-level waste glass","authors":"Ruidong Jia, Chenchen Niu, Xuelian Liu, Kai Xu, Shengheng Tan","doi":"10.1111/jace.20071","DOIUrl":null,"url":null,"abstract":"<p>Borosilicate glasses are the primary waste forms for the industrial immobilization of high-level liquid waste. Yet, the compositional variation of waste glasses can form the diopside phase, which can be detrimental to the melting process and the properties of the final glass products. This study prepared simulated waste glasses with variable contents of alkaline earth metals, boron, transition metals, and rare earth metal oxide and subjected them to heat treatments. The effect of the compositional variation on the diopside crystallization behavior was explored using differential scanning calorimetry, X-ray diffraction, optical microscopy, and scanning electron microscopy-energy dispersive spectroscopy. The results revealed that the average size of diopside crystals was proportional to the square root of the heat treatment durations. Increased contents of alkaline earth and transition metal oxides could contribute to the growth of diopside crystals, while boron oxide tended to inhibit it. Finally, a prediction model correlating the average crystal size, compositional variation, and heat treatment durations was discussed.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8132-8141"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20071","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Borosilicate glasses are the primary waste forms for the industrial immobilization of high-level liquid waste. Yet, the compositional variation of waste glasses can form the diopside phase, which can be detrimental to the melting process and the properties of the final glass products. This study prepared simulated waste glasses with variable contents of alkaline earth metals, boron, transition metals, and rare earth metal oxide and subjected them to heat treatments. The effect of the compositional variation on the diopside crystallization behavior was explored using differential scanning calorimetry, X-ray diffraction, optical microscopy, and scanning electron microscopy-energy dispersive spectroscopy. The results revealed that the average size of diopside crystals was proportional to the square root of the heat treatment durations. Increased contents of alkaline earth and transition metal oxides could contribute to the growth of diopside crystals, while boron oxide tended to inhibit it. Finally, a prediction model correlating the average crystal size, compositional variation, and heat treatment durations was discussed.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.