Issue Information

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of the American Ceramic Society Pub Date : 2024-11-03 DOI:10.1111/jace.19880
{"title":"Issue Information","authors":"","doi":"10.1111/jace.19880","DOIUrl":null,"url":null,"abstract":"<p><b>Cover Photograph</b>: <i>Plasma-Flash Sintering (PFS) is performed under low-pressure atmosphere that consecutively generates plasma and flash events. This study shows that PFS stabilizes metastable phases on the surface of the material and enables absorption of ionized species generated in the plasma, giving this technique potential to be used as a surface engineering tool. Read more in the rapid communication in this issue</i>, https://doi.org/10.1111/jace.20105.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.19880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.19880","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cover Photograph: Plasma-Flash Sintering (PFS) is performed under low-pressure atmosphere that consecutively generates plasma and flash events. This study shows that PFS stabilizes metastable phases on the surface of the material and enables absorption of ionized species generated in the plasma, giving this technique potential to be used as a surface engineering tool. Read more in the rapid communication in this issue, https://doi.org/10.1111/jace.20105.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发行信息
封面照片:等离子体-闪光烧结(PFS)是在连续产生等离子体和闪光事件的低压气氛下进行的。这项研究表明,等离子体-闪光烧结技术能稳定材料表面的析出相,并能吸收等离子体中产生的电离物质,从而使这项技术有望成为一种表面工程工具。欲了解更多信息,请参阅本期快速通讯,https://doi.org/10.1111/jace.20105。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
期刊最新文献
Issue Information Issue Information Interlaboratory study of flexural strength in additively manufactured alumina Boron nitride: Novel ceramic reductant for low-activity waste vitrification Low-temperature bubble formation in silica glass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1