Haoran Zou, Wen Zhang, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Bin Li, Zhengyi Fu
{"title":"Microstructure and mechanical properties of textured high-entropy M₄AlC₃/Al₂O₃ (M = Ti, V, Mo, Nb, Ta) composites","authors":"Haoran Zou, Wen Zhang, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Bin Li, Zhengyi Fu","doi":"10.1111/jace.20082","DOIUrl":null,"url":null,"abstract":"<p>High-performance MAX phase-based composites were developed to overcome the inherent low hardness and low strength of MAX phases by combining lattice distortion-induced strengthening, texture strengthening, and second-phase particle strengthening. Textured high-entropy M<sub>4</sub>AlC<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> (M = Ti, V, Mo, Nb, Ta) composites with different Al<sub>2</sub>O<sub>3</sub> contents were prepared using spark plasma sintering at 1350°C for 70 min. The microstructures of all samples with different compositions were characterized in detail. It was found that as the Al<sub>2</sub>O<sub>3</sub> content increased, the grain size of the high-entropy M<sub>4</sub>AlC<sub>3</sub> phase gradually decreased, and the aggregation of Al<sub>2</sub>O<sub>3</sub> became more severe. Based on this, the density, hardness, strength, and fracture toughness of all composites were tested. The results indicate that all textured composites exhibit significant anisotropy in their properties, with the high-entropy M<sub>4</sub>AlC<sub>3</sub>/15 vol%Al<sub>2</sub>O<sub>3</sub> composite showing the best overall performance. Additionally, the mechanism of performance improvement was systematically discussed. This work provides an important reference for the subsequent preparation of high-performance MAX phase-based composites.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8490-8502"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20082","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance MAX phase-based composites were developed to overcome the inherent low hardness and low strength of MAX phases by combining lattice distortion-induced strengthening, texture strengthening, and second-phase particle strengthening. Textured high-entropy M4AlC3/Al2O3 (M = Ti, V, Mo, Nb, Ta) composites with different Al2O3 contents were prepared using spark plasma sintering at 1350°C for 70 min. The microstructures of all samples with different compositions were characterized in detail. It was found that as the Al2O3 content increased, the grain size of the high-entropy M4AlC3 phase gradually decreased, and the aggregation of Al2O3 became more severe. Based on this, the density, hardness, strength, and fracture toughness of all composites were tested. The results indicate that all textured composites exhibit significant anisotropy in their properties, with the high-entropy M4AlC3/15 vol%Al2O3 composite showing the best overall performance. Additionally, the mechanism of performance improvement was systematically discussed. This work provides an important reference for the subsequent preparation of high-performance MAX phase-based composites.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.