Field Study of HPTRM Combined with Vegetation and Anchor to Protect Newly Excavated Expansive Soil Slope

IF 4.1 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Earth Science Pub Date : 2024-08-14 DOI:10.1007/s12583-021-1570-4
Yingzi Xu, Xuhang Liao, Linqiang Tang, Lin Li
{"title":"Field Study of HPTRM Combined with Vegetation and Anchor to Protect Newly Excavated Expansive Soil Slope","authors":"Yingzi Xu, Xuhang Liao, Linqiang Tang, Lin Li","doi":"10.1007/s12583-021-1570-4","DOIUrl":null,"url":null,"abstract":"<p>Anchor reinforced vegetation system (ARVS) comprises high performance turf reinforcement mats (HPTRM), vegetation and anchors. It is a new attempt to apply the system in expansive soil slope protection. The goal of this paper was to evaluate the effectiveness of ARVS in protecting newly excavated expansive soil slopes. The field tests on the bare slope, grassed slope and ARVS protective slope were carried out, including natural and artificial rainfall. During the test, the soil water content, soil deformation, and anchor axial force were monitored, and then the slope protection mechanism of ARVS was analyzed. It was found that ARVS can effectively protect expansive soil slopes compared with bare slopes and grassed slopes. The vegetation and HPTRM form a reinforced turf, and the anchors fix it to the slope surface, thus restraining the expansion deformation. The axial force on the anchor of ARVS includes frictional resistance and tensile force transmitted by HPTRM, which is maximum at the early stage of support. The neutral point of the anchor of ARVS moves deeper under atmospheric action, but the vegetation and HPTRM on the slope surface can limit this movement.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1570-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anchor reinforced vegetation system (ARVS) comprises high performance turf reinforcement mats (HPTRM), vegetation and anchors. It is a new attempt to apply the system in expansive soil slope protection. The goal of this paper was to evaluate the effectiveness of ARVS in protecting newly excavated expansive soil slopes. The field tests on the bare slope, grassed slope and ARVS protective slope were carried out, including natural and artificial rainfall. During the test, the soil water content, soil deformation, and anchor axial force were monitored, and then the slope protection mechanism of ARVS was analyzed. It was found that ARVS can effectively protect expansive soil slopes compared with bare slopes and grassed slopes. The vegetation and HPTRM form a reinforced turf, and the anchors fix it to the slope surface, thus restraining the expansion deformation. The axial force on the anchor of ARVS includes frictional resistance and tensile force transmitted by HPTRM, which is maximum at the early stage of support. The neutral point of the anchor of ARVS moves deeper under atmospheric action, but the vegetation and HPTRM on the slope surface can limit this movement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合植被和锚杆保护新开挖的膨胀土边坡的 HPTRM 实地研究
锚杆加固植被系统(ARVS)由高性能草皮加固垫(HPTRM)、植被和锚杆组成。这是将该系统应用于膨胀性土壤边坡保护的新尝试。本文旨在评估 ARVS 在保护新开挖的膨胀性土壤边坡方面的有效性。对裸露边坡、植草边坡和 ARVS 防护边坡进行了现场试验,包括自然降雨和人工降雨。试验期间,监测了土壤含水量、土壤变形和锚杆轴向力,然后分析了 ARVS 的边坡防护机理。结果发现,与裸露边坡和植草边坡相比,ARVS 能有效保护膨胀性土壤边坡。植被和 HPTRM 形成加固草皮,锚杆将其固定在边坡表面,从而抑制了膨胀变形。ARVS 锚杆的轴向力包括摩擦阻力和 HPTRM 传递的拉力,在支护初期最大。ARVS 锚杆的中点在大气作用下会向深处移动,但斜坡表面的植被和 HPTRM 可以限制这种移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Earth Science
Journal of Earth Science 地学-地球科学综合
CiteScore
5.50
自引率
12.10%
发文量
128
审稿时长
4.5 months
期刊介绍: Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences. Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event. The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.
期刊最新文献
Quaternary Activity Characteristics and Regional Tectonic Significance of the Jiulong Fault in Jiujiang, Jiangxi Province, China Application of Detrital Apatite U-Pb Geochronology and Trace Elements for Provenance Analysis, Insights from a Study on the Yarlung River Sand Microstructures, Deformation Mechanisms and Seismic Properties of Synkinematic Migmatite from Southeastern Tibet: Insights from the Migmatitic Core of the Ailao Shan-Red River Shear Zone, Western Yunnan, China Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1