Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-09-05 DOI:10.1088/2053-1583/ad690f
Marc Vila
{"title":"Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions","authors":"Marc Vila","doi":"10.1088/2053-1583/ad690f","DOIUrl":null,"url":null,"abstract":"Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin–orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than <inline-formula>\n<tex-math><?CDATA $10^6 \\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>6</mml:mn></mml:msup><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad690fieqn1.gif\"></inline-graphic></inline-formula> when the relative alignment of TMDs goes from 0<sup>∘</sup> to 60<sup>∘</sup> and when the angle is kept fixed at 60<sup>∘</sup> and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large (<inline-formula>\n<tex-math><?CDATA $10^4 \\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad690fieqn2.gif\"></inline-graphic></inline-formula>) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad690f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin–orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than 106% when the relative alignment of TMDs goes from 0 to 60 and when the angle is kept fixed at 60 and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large ( 104%) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲过渡金属二卤化物隧道结中的巨型电阻开关
多层结构中的电阻开关通常基于具有铁阶的材料。在这里,我们根据扭曲的过渡金属二掺杂化合物(TMD)单层隧道结中的相对自旋轨道分裂,预测了一种极大的电阻切换。由于价带自旋分裂取决于布里渊区的谷指数,因此通过结点的垂直电子传输取决于两层自旋相关费米面的相对倒易空间重叠,这可以通过扭曲一层来调整。我们的量子输运计算显示,当 TMD 的相对排列从 0∘ 到 60∘,角度固定在 60∘,而费米水平变化时,开关电阻大于 106%。通过产生空位,我们评估了谷间散射对效率的影响,并发现在典型的空位浓度值下,电阻切换仍然很大(104%)。由于自旋分裂较大,这种电阻切换不仅可以在室温下观察到,而且我们的研究结果还表明,范德华异质结构的扭角工程和控制可用于下一代存储器和电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions Non-van der Waals MCrS2 nanosheets with tunable two-dimensional ferromagnetism Liquid-phase exfoliated 2D materials for lithium-ion battery anode: current status and future direction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1