Na Luo, Hao Ma, Tao Zhang, Jiajing Wu, Zheng-Jie Chen, Minwei Xu, Yuanmiao Sun, Jing Peng
{"title":"Non-van der Waals MCrS2 nanosheets with tunable two-dimensional ferromagnetism","authors":"Na Luo, Hao Ma, Tao Zhang, Jiajing Wu, Zheng-Jie Chen, Minwei Xu, Yuanmiao Sun, Jing Peng","doi":"10.1088/2053-1583/ad70c6","DOIUrl":null,"url":null,"abstract":"Designing two-dimensional (2D) ferromagnetic materials with high Curie temperature is urgent for the development of spintronic technology. The exploration of non-van der Waals (vdW) ferromagnetic nanosheets play a vital role in enriching the 2D ferromagnetic materials family on account of the scarcity of vdW materials in nature. Herein, we report a non-vdW AgCrS<sub>2</sub> material with antiferro-to-ferro-magnetism transition when it thinned down to monolayer. Based on it, a universal ion-exchange strategy was employed to replace Ag<sup>+</sup> by the M (M = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>) cations, acquiring a series of 2D non-vdW M<italic toggle=\"yes\"><sub>x</sub></italic>Ag<sub>0.5−<italic toggle=\"yes\">x</italic></sub>CrS<sub>2</sub> materials with tunable ferromagnetism. The Curie temperature is higher than the AgCrS<sub>2</sub> nanosheet, and reaches up to 160 K when M is K<sup>+</sup>. The theoretical calculations verify the ferromagnetism of AgCrS<sub>2</sub> and M<italic toggle=\"yes\"><sub>x</sub></italic>Ag<sub>0.5−<italic toggle=\"yes\">x</italic></sub>CrS<sub>2</sub> nanosheet originated from CrS<sub>2</sub> layer. The disorderly arranged M and Ag ions increase the asymmetry of the lattice structure of M<italic toggle=\"yes\"><sub>x</sub></italic>Ag<sub>0.5−<italic toggle=\"yes\">x</italic></sub>CrS<sub>2</sub>, thereby strengthening the interlayer ferromagnetic coupling and raising the Curie temperature of the nanosheets. This work provides ideas for discovering more 2D ferromagnetic materials with high Curie temperature.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"101 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad70c6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing two-dimensional (2D) ferromagnetic materials with high Curie temperature is urgent for the development of spintronic technology. The exploration of non-van der Waals (vdW) ferromagnetic nanosheets play a vital role in enriching the 2D ferromagnetic materials family on account of the scarcity of vdW materials in nature. Herein, we report a non-vdW AgCrS2 material with antiferro-to-ferro-magnetism transition when it thinned down to monolayer. Based on it, a universal ion-exchange strategy was employed to replace Ag+ by the M (M = Li+, Na+, K+) cations, acquiring a series of 2D non-vdW MxAg0.5−xCrS2 materials with tunable ferromagnetism. The Curie temperature is higher than the AgCrS2 nanosheet, and reaches up to 160 K when M is K+. The theoretical calculations verify the ferromagnetism of AgCrS2 and MxAg0.5−xCrS2 nanosheet originated from CrS2 layer. The disorderly arranged M and Ag ions increase the asymmetry of the lattice structure of MxAg0.5−xCrS2, thereby strengthening the interlayer ferromagnetic coupling and raising the Curie temperature of the nanosheets. This work provides ideas for discovering more 2D ferromagnetic materials with high Curie temperature.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.