Zinc oxide behavior in CO detection as a function of thermal treatment time

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY Journal of Physics Communications Pub Date : 2024-09-11 DOI:10.1088/2399-6528/ad777b
M P Munguía-Martín, D Sánchez-Campos, D Mendoza-Anaya, T V K Karthik, L S Villaseñor-Cerón, M I Reyes-Valderrama and V Rodríguez-Lugo
{"title":"Zinc oxide behavior in CO detection as a function of thermal treatment time","authors":"M P Munguía-Martín, D Sánchez-Campos, D Mendoza-Anaya, T V K Karthik, L S Villaseñor-Cerón, M I Reyes-Valderrama and V Rodríguez-Lugo","doi":"10.1088/2399-6528/ad777b","DOIUrl":null,"url":null,"abstract":"Gas sensors are crucial for safety and well-being in various environments. Zinc oxide (ZnO) gas sensors are notable for their broad gas detection capabilities. In this study, ZnO structures were synthesized by optimized chemical precipitation method with urea, followed by a thermal treatment at 500 °C for 5, 10, 13, and 15 h. The microstructural, morphological, and CO sensing properties were examined. X-ray Diffraction analysis confirmed the hexagonal wurtzite phase. Crystallite size increased from 17.28 to 18.95 nm with longer thermal treatment times. Scanning Electron Microscopy revealed spherical and semi-spherical agglomerates with middle distribution of particle sizes ranging from 140 to 445 nm. The synthesized ZnO structures were evaluated as gas sensors for CO detection. Response time, recovery time, and sensor response were analyzed in a CO atmosphere at 100, 200, and 300 °C. The sample with thermal treatment for 13 h exhibited the lowest Tr of 2.43 s at a concentration of 166 parts per million and 300 °C. The Tr reduction correlated with a ZnO decrease particle size observed with longer thermal treatment times, highlighting the influence of particle size on sensor performance.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad777b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas sensors are crucial for safety and well-being in various environments. Zinc oxide (ZnO) gas sensors are notable for their broad gas detection capabilities. In this study, ZnO structures were synthesized by optimized chemical precipitation method with urea, followed by a thermal treatment at 500 °C for 5, 10, 13, and 15 h. The microstructural, morphological, and CO sensing properties were examined. X-ray Diffraction analysis confirmed the hexagonal wurtzite phase. Crystallite size increased from 17.28 to 18.95 nm with longer thermal treatment times. Scanning Electron Microscopy revealed spherical and semi-spherical agglomerates with middle distribution of particle sizes ranging from 140 to 445 nm. The synthesized ZnO structures were evaluated as gas sensors for CO detection. Response time, recovery time, and sensor response were analyzed in a CO atmosphere at 100, 200, and 300 °C. The sample with thermal treatment for 13 h exhibited the lowest Tr of 2.43 s at a concentration of 166 parts per million and 300 °C. The Tr reduction correlated with a ZnO decrease particle size observed with longer thermal treatment times, highlighting the influence of particle size on sensor performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌在一氧化碳检测中的表现与热处理时间的关系
气体传感器对于各种环境中的安全和健康至关重要。氧化锌(ZnO)气体传感器因其广泛的气体检测能力而备受瞩目。本研究采用优化的尿素化学沉淀法合成了氧化锌结构,然后在 500 ℃ 下进行了 5、10、13 和 15 小时的热处理。X 射线衍射分析证实了六方晶格相。随着热处理时间的延长,晶体尺寸从 17.28 纳米增加到 18.95 纳米。扫描电子显微镜显示出球形和半球形团聚体,粒径分布在 140 至 445 nm 之间。将合成的氧化锌结构作为检测一氧化碳的气体传感器进行了评估。在 100、200 和 300 °C 的 CO 气氛中分析了响应时间、恢复时间和传感器响应。在浓度为百万分之 166、温度为 300 ℃ 的条件下,经过 13 小时热处理的样品的 Tr 值最低,为 2.43 秒。随着热处理时间的延长,Tr 的降低与 ZnO 粒径的减小有关,这突出表明了粒径对传感器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
期刊最新文献
Deriving measurement collapse using zeta function regularisation and speculative measurement theory Zinc oxide behavior in CO detection as a function of thermal treatment time Teleportation of a qubit using quasi-Bell states The n-shot classical capacity of the quantum erasure channel Anisotropic effects in the nondipole relativistic photoionization of hydrogen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1