Current landscape of mRNA technologies and delivery systems for new modality therapeutics

IF 9 2区 医学 Q1 CELL BIOLOGY Journal of Biomedical Science Pub Date : 2024-09-10 DOI:10.1186/s12929-024-01080-z
Ruei-Min Lu, Hsiang-En Hsu, Ser John Lynon P. Perez, Monika Kumari, Guan-Hong Chen, Ming-Hsiang Hong, Yin-Shiou Lin, Ching-Hang Liu, Shih-Han Ko, Christian Angelo P. Concio, Yi-Jen Su, Yi-Han Chang, Wen-Shan Li, Han-Chung Wu
{"title":"Current landscape of mRNA technologies and delivery systems for new modality therapeutics","authors":"Ruei-Min Lu, Hsiang-En Hsu, Ser John Lynon P. Perez, Monika Kumari, Guan-Hong Chen, Ming-Hsiang Hong, Yin-Shiou Lin, Ching-Hang Liu, Shih-Han Ko, Christian Angelo P. Concio, Yi-Jen Su, Yi-Han Chang, Wen-Shan Li, Han-Chung Wu","doi":"10.1186/s12929-024-01080-z","DOIUrl":null,"url":null,"abstract":"Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01080-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于新模式疗法的 mRNA 技术和传输系统的现状
要实现以 mRNA 为基础的药物的巨大临床潜力,就需要不断开发既能高效安全地递送生物活性制剂,又不会引发副作用的方法。在这方面,脂质纳米颗粒已被成功用于改善 mRNA 的递送并保护货物不被细胞外降解。封装在脂质纳米颗粒中是 mRNA 疫苗成功应用于临床的一个重要因素,这最终证明了该技术具有生产获批药物的潜力。在这篇综述中,我们首先介绍了目前在 mRNA 修饰、新型脂质的设计和基于 mRNA 药物的脂质纳米颗粒成分的开发方面取得的进展。然后,我们总结了与 mRNA 疗法的临床前和临床开发有关的要点。最后,我们将介绍与靶向递送系统相关的主题,包括免疫细胞、肿瘤和器官的内体逸出和靶向,以用于 mRNA 疫苗和人类疾病的新治疗模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
期刊最新文献
Decreased plasma gelsolin fosters a fibrotic tumor microenvironment and promotes chemoradiotherapy resistance in esophageal squamous cell carcinoma Current landscape of mRNA technologies and delivery systems for new modality therapeutics Neuroprotective effects of intranasal extracellular vesicles from human platelet concentrates supernatants in traumatic brain injury and Parkinson's disease models. Tudor-SN exacerbates pathological vascular remodeling by promoting the polyubiquitination of PTEN via NEDD4-1. Dengue NS1 interaction with lipids alters its pathogenic effects on monocyte derived macrophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1