Pub Date : 2024-11-05DOI: 10.1186/s12929-024-01090-x
Chien-Tai Hong, Jia-Hung Chen, Chaur-Jong Hu
Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.
{"title":"Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease.","authors":"Chien-Tai Hong, Jia-Hung Chen, Chaur-Jong Hu","doi":"10.1186/s12929-024-01090-x","DOIUrl":"10.1186/s12929-024-01090-x","url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"102"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12929-024-01087-6
Ludovica Barone, Martina Cucchiara, Maria Teresa Palano, Barbara Bassani, Matteo Gallazzi, Federica Rossi, Mario Raspanti, Piero Antonio Zecca, Gianluca De Antoni, Christina Pagiatakis, Roberto Papait, Giovanni Bernardini, Antonino Bruno, Rosalba Gornati
Background: Cell therapy has emerged as a revolutionary tool to repair damaged tissues by restoration of an adequate vasculature. Dental Pulp stem cells (DPSC), due to their easy biological access, ex vivo properties, and ability to support angiogenesis have been largely explored in regenerative medicine.
Methods: Here, we tested the capability of Dental Pulp Stem Cell-Conditioned medium (DPSC-CM), produced in normoxic (DPSC-CM Normox) or hypoxic (DPSC-CM Hypox) conditions, to support angiogenesis via their soluble factors. CMs were characterized by a secretome protein array, then used for in vivo and in vitro experiments. In in vivo experiments, DPSC-CMs were associated to an Ultimatrix sponge and injected in nude mice. After excision, Ultimatrix were assayed by immunohistochemistry, electron microscopy and flow cytometry, to evaluate the presence of endothelial, stromal, and immune cells. For in vitro procedures, DPSC-CMs were used on human umbilical-vein endothelial cells (HUVECs), to test their effects on cell adhesion, migration, tube formation, and on their capability to recruit human CD14+ monocytes.
Results: We found that DPSC-CM Hypox exert stronger pro-angiogenic activities, compared with DPSC-CM Normox, by increasing the frequency of CD31+ endothelial cells, the number of vessels and hemoglobin content in the Ultimatrix sponges. We observed that Utimatrix sponges associated with DPSC-CM Hypox or DPSC-CM Normox shared similar capability to recruit CD45- stromal cells, CD45+ leukocytes, F4/80+ macrophages, CD80+ M1-macrophages and CD206+ M2-macropages. We also observed that DPSC-CM Hypox and DPSC-CM Normox have similar capabilities to support HUVEC adhesion, migration, induction of a pro-angiogenic gene signature and the generation of capillary-like structures, together with the ability to recruit human CD14+ monocytes.
Conclusions: Our results provide evidence that DPSCs-CM, produced under hypoxic conditions, can be proposed as a tool able to support angiogenesis via macrophage polarization, suggesting its use to overcome the issues and restrictions associated with the use of staminal cells.
{"title":"Dental pulp mesenchymal stem cell (DPSCs)-derived soluble factors, produced under hypoxic conditions, support angiogenesis via endothelial cell activation and generation of M2-like macrophages.","authors":"Ludovica Barone, Martina Cucchiara, Maria Teresa Palano, Barbara Bassani, Matteo Gallazzi, Federica Rossi, Mario Raspanti, Piero Antonio Zecca, Gianluca De Antoni, Christina Pagiatakis, Roberto Papait, Giovanni Bernardini, Antonino Bruno, Rosalba Gornati","doi":"10.1186/s12929-024-01087-6","DOIUrl":"10.1186/s12929-024-01087-6","url":null,"abstract":"<p><strong>Background: </strong>Cell therapy has emerged as a revolutionary tool to repair damaged tissues by restoration of an adequate vasculature. Dental Pulp stem cells (DPSC), due to their easy biological access, ex vivo properties, and ability to support angiogenesis have been largely explored in regenerative medicine.</p><p><strong>Methods: </strong>Here, we tested the capability of Dental Pulp Stem Cell-Conditioned medium (DPSC-CM), produced in normoxic (DPSC-CM Normox) or hypoxic (DPSC-CM Hypox) conditions, to support angiogenesis via their soluble factors. CMs were characterized by a secretome protein array, then used for in vivo and in vitro experiments. In in vivo experiments, DPSC-CMs were associated to an Ultimatrix sponge and injected in nude mice. After excision, Ultimatrix were assayed by immunohistochemistry, electron microscopy and flow cytometry, to evaluate the presence of endothelial, stromal, and immune cells. For in vitro procedures, DPSC-CMs were used on human umbilical-vein endothelial cells (HUVECs), to test their effects on cell adhesion, migration, tube formation, and on their capability to recruit human CD14<sup>+</sup> monocytes.</p><p><strong>Results: </strong>We found that DPSC-CM Hypox exert stronger pro-angiogenic activities, compared with DPSC-CM Normox, by increasing the frequency of CD31<sup>+</sup> endothelial cells, the number of vessels and hemoglobin content in the Ultimatrix sponges. We observed that Utimatrix sponges associated with DPSC-CM Hypox or DPSC-CM Normox shared similar capability to recruit CD45<sup>-</sup> stromal cells, CD45<sup>+</sup> leukocytes, F4/80<sup>+</sup> macrophages, CD80<sup>+</sup> M1-macrophages and CD206<sup>+</sup> M2-macropages. We also observed that DPSC-CM Hypox and DPSC-CM Normox have similar capabilities to support HUVEC adhesion, migration, induction of a pro-angiogenic gene signature and the generation of capillary-like structures, together with the ability to recruit human CD14<sup>+</sup> monocytes.</p><p><strong>Conclusions: </strong>Our results provide evidence that DPSCs-CM, produced under hypoxic conditions, can be proposed as a tool able to support angiogenesis via macrophage polarization, suggesting its use to overcome the issues and restrictions associated with the use of staminal cells.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"99"},"PeriodicalIF":9.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
{"title":"Exploring paraptosis as a therapeutic approach in cancer treatment.","authors":"Ling-Chu Chang, Shih-Kai Chiang, Shuen-Ei Chen, Mien-Chie Hung","doi":"10.1186/s12929-024-01089-4","DOIUrl":"10.1186/s12929-024-01089-4","url":null,"abstract":"<p><p>A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"101"},"PeriodicalIF":9.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12929-024-01088-5
G G Edel, M van Kempen, A Boerema-de Munck, C N Huisman, C A P Naalden, R W W Brouwer, S Koornneef, W F J van IJcken, R M H Wijnen, R J Rottier
Background: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a fatal congenital lung disorder strongly associated with genomic alterations in the Forkhead box F1 (FOXF1) gene and its regulatory region. However, little is known about how FOXF1 genomic alterations cause ACD/MPV and what molecular mechanisms are affected by these mutations. Therefore, the effect of ACD/MPV patient-specific mutations in the FOXF1 gene on the molecular function of FOXF1 was studied.
Methods: Epitope-tagged FOXF1 constructs containing one of the ACD/MPV-associated mutations were expressed in mammalian cell lines to study the effect of FOXF1 mutations on protein function. EMSA binding assays and luciferase assays were performed to study the effect on target gene binding and activation. Immunoprecipitation followed by SDS‒PAGE and western blotting were used to study protein‒protein interactions. Protein phosphorylation was studied using phos-tag western blotting.
Results: An overview of the localization of ACD/MPV-associated FOXF1 mutations revealed that the G91-S101 region was frequently mutated. A three-dimensional model of the forkhead DNA-binding domain of FOXF1 showed that the G91-S101 region consists of an α-helix and is predicted to be important for DNA binding. We showed that FOXF1 missense mutations in this region differentially affect the DNA binding of the FOXF1 protein and influence the transcriptional regulation of target genes depending on the location of the mutation. Furthermore, we showed that some of these mutations can affect the FOXF1 protein at the posttranscriptional level, as shown by altered phosphorylation by MST1 and MST2 kinases.
Conclusion: Missense mutations in the coding region of the FOXF1 gene alter the molecular function of the FOXF1 protein at multiple levels, such as phosphorylation, DNA binding and target gene activation. These results indicate that FOXF1 molecular pathways may be differentially affected in ACD/MPV patients carrying missense mutations in the DNA-binding domain and may explain the phenotypic heterogeneity of ACD/MPV.
背景:肺泡毛细血管发育不良伴肺静脉错位(ACD/MPV)是一种致命的先天性肺部疾病,与叉头框 F1(FOXF1)基因及其调控区的基因组改变密切相关。然而,人们对 FOXF1 基因组改变如何导致 ACD/MPV 以及这些突变影响了哪些分子机制知之甚少。因此,我们研究了 ACD/MPV 患者特异性 FOXF1 基因突变对 FOXF1 分子功能的影响:方法:在哺乳动物细胞系中表达含有一种ACD/MPV相关突变的表位标记FOXF1构建体,以研究FOXF1突变对蛋白质功能的影响。进行了 EMSA 结合测定和荧光素酶测定,以研究对靶基因结合和激活的影响。免疫沉淀法和 SDS-PAGE 及 Western 印迹法用于研究蛋白质与蛋白质之间的相互作用。使用 phos-tag western 印迹法研究了蛋白质磷酸化:结果:ACD/MPV相关FOXF1突变的定位概述显示,G91-S101区域经常发生突变。FOXF1叉头DNA结合域的三维模型显示,G91-S101区域由一个α-螺旋组成,预计对DNA结合非常重要。我们发现,该区域的 FOXF1 错义突变会影响 FOXF1 蛋白的 DNA 结合,并根据突变位置的不同影响靶基因的转录调控。此外,我们还发现其中一些突变可在转录后水平影响FOXF1蛋白,如MST1和MST2激酶磷酸化的改变:结论:FOXF1基因编码区的错义突变在多个水平上改变了FOXF1蛋白的分子功能,如磷酸化、DNA结合和靶基因激活。这些结果表明,携带DNA结合域错义突变的ACD/MPV患者的FOXF1分子通路可能受到不同程度的影响,这可能是ACD/MPV表型异质性的原因。
{"title":"The molecular consequences of FOXF1 missense mutations associated with alveolar capillary dysplasia with misalignment of pulmonary veins.","authors":"G G Edel, M van Kempen, A Boerema-de Munck, C N Huisman, C A P Naalden, R W W Brouwer, S Koornneef, W F J van IJcken, R M H Wijnen, R J Rottier","doi":"10.1186/s12929-024-01088-5","DOIUrl":"10.1186/s12929-024-01088-5","url":null,"abstract":"<p><strong>Background: </strong>Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a fatal congenital lung disorder strongly associated with genomic alterations in the Forkhead box F1 (FOXF1) gene and its regulatory region. However, little is known about how FOXF1 genomic alterations cause ACD/MPV and what molecular mechanisms are affected by these mutations. Therefore, the effect of ACD/MPV patient-specific mutations in the FOXF1 gene on the molecular function of FOXF1 was studied.</p><p><strong>Methods: </strong>Epitope-tagged FOXF1 constructs containing one of the ACD/MPV-associated mutations were expressed in mammalian cell lines to study the effect of FOXF1 mutations on protein function. EMSA binding assays and luciferase assays were performed to study the effect on target gene binding and activation. Immunoprecipitation followed by SDS‒PAGE and western blotting were used to study protein‒protein interactions. Protein phosphorylation was studied using phos-tag western blotting.</p><p><strong>Results: </strong>An overview of the localization of ACD/MPV-associated FOXF1 mutations revealed that the G91-S101 region was frequently mutated. A three-dimensional model of the forkhead DNA-binding domain of FOXF1 showed that the G91-S101 region consists of an α-helix and is predicted to be important for DNA binding. We showed that FOXF1 missense mutations in this region differentially affect the DNA binding of the FOXF1 protein and influence the transcriptional regulation of target genes depending on the location of the mutation. Furthermore, we showed that some of these mutations can affect the FOXF1 protein at the posttranscriptional level, as shown by altered phosphorylation by MST1 and MST2 kinases.</p><p><strong>Conclusion: </strong>Missense mutations in the coding region of the FOXF1 gene alter the molecular function of the FOXF1 protein at multiple levels, such as phosphorylation, DNA binding and target gene activation. These results indicate that FOXF1 molecular pathways may be differentially affected in ACD/MPV patients carrying missense mutations in the DNA-binding domain and may explain the phenotypic heterogeneity of ACD/MPV.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"100"},"PeriodicalIF":9.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1186/s12929-024-01084-9
Elena Gurrieri, Giulia Carradori, Michela Roccuzzo, Michael Pancher, Daniele Peroni, Romina Belli, Caterina Trevisan, Michela Notarangelo, Wen-Qiu Huang, Agata S A Carreira, Alessandro Quattrone, Guido Jenster, Timo L M Ten Hagen, Vito Giuseppe D'Agostino
Background: Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications.
Methods: In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors.
Results: Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies.
Conclusions: This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.
背景:细胞外囊泡 (EV) 是细胞分泌的颗粒,是细胞间通信的天然载体。通过对 EV 进行功能化处理,可以捕获异质分子货物并靶向特定细胞群,有望推动生物医学应用的发展。然而,获得的 EVs 的效率、细胞暴露受体对 EV 相互作用的贡献,以及功能性货物释放的可预测性与高分子量重组 mRNAs 的潜在共享,对于推进异源 EVs 在靶向治疗中的应用至关重要:在这项工作中,我们选择了流行的EV标记物CD81作为融合蛋白的跨膜导向,其C端GFP报告物包含或不包含靶向HER2受体的曲妥珠单抗轻链。我们进行了高含量成像分析,以跟踪 EV 与细胞的相互作用,包括 HER2 表达受控的同源乳腺癌细胞。我们验证了携带多柔比星的重组 EV 在 EV 供体细胞处理后的功能性货物运输。然后,我们使用常用作 HER2 难治性、曲妥珠单抗耐药模型的 JIMT-1 细胞进行了体内研究,在移植的肿瘤中检测到长度超过 2000 nt 的重组 mRNA:结果:融合蛋白参与了囊泡转运动力学,并根据其在 HEK293T 细胞中的表达水平在分泌型 EV 上积累。尽管存在 GFP,但分泌型 EV 群体仍具有 HER2 受体结合能力,并可用于追踪 EV 细胞间的相互作用。在HER2阳性(SK-BR-3)或阴性(MDA-MB-231)乳腺癌细胞系之间,EV的总体分布没有发生变化,在这种情况下,异源细胞中的HER2暴露明显影响了异源EV的趋向性,这证明了抗HER2 EV的特异性,EV约占大量分泌囊泡的20%。这种特异性相互作用与多柔比星-EVs 在异位表达 HER2 的 MDA-MB-231 中细胞杀伤活性的提高以及在 HER2 受体被敲除的 SK-BR-3 中毒性的降低密切相关,从而克服了游离药物的作用。有趣的是,重组EV中以全长mRNA形式存在的融合蛋白对应转录本可以到达JIMT-1异种移植小鼠的正位乳腺肿瘤,提高了我们在组织活检中检测穿透性货物的灵敏度:这项研究强调了创建分泌型异源 EV 平台的定量基础,并显示了 EV 细胞啮合机制背后单一受体-配体相互作用的局限性,现在这已成为预测功能趋向性和设计新一代基于 EV 的纳米载体的关键步骤。
{"title":"CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells.","authors":"Elena Gurrieri, Giulia Carradori, Michela Roccuzzo, Michael Pancher, Daniele Peroni, Romina Belli, Caterina Trevisan, Michela Notarangelo, Wen-Qiu Huang, Agata S A Carreira, Alessandro Quattrone, Guido Jenster, Timo L M Ten Hagen, Vito Giuseppe D'Agostino","doi":"10.1186/s12929-024-01084-9","DOIUrl":"https://doi.org/10.1186/s12929-024-01084-9","url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications.</p><p><strong>Methods: </strong>In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors.</p><p><strong>Results: </strong>Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies.</p><p><strong>Conclusions: </strong>This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"92"},"PeriodicalIF":9.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Primary ovarian insufficiency (POI) is an early decline in ovarian function that leads to ovarian failure. Conventional treatments for POI are inadequate, and treatments based on mesenchymal stem cells (MSCs) have emerged as an option. However, the lack of consideration of the estrogen niche in ovarian tissue significantly reduces the therapeutic efficacy, with an unclear mechanism in the MSCs in POI treatment. Furthermore, the disruption of circadian rhythm associated with POI has not been previously addressed.
Methods: Conditioned medium (CM) and estradiol-conditioned medium (E2-CM) were generated from estrogen receptor positive MSCs (ER+pcMSCs). Chemotherapy-induced POI models were established using C57BL/6 mice (in vivo) and KGN cells (in vitro) treated with cyclophosphamide (CTX) or 4-hydroperoxycyclophosphamide (4-OOH-CP). Gene/protein expressions were detected using RT-qPCR, Western blotting, and immunohistochemistry assays. Locomotor activity was monitored for behavioral circadian rhythmicity. Cytokine arrays and miRNA analysis were conducted to analyze potential factors within CM/E2-CM.
Results: The secretome of ER+pcMSCs (CM and E2-CM) significantly reduced the CTX-induced defects in ovarian folliculogenesis and circadian rhythm. CM/E2-CM also reduced granulosa cell apoptosis and rescued angiogenesis in POI ovarian tissues. E2-CM had a more favorable effect than the CM. Notably, ER+pcMSC secretome restored CTX-induced circadian rhythm defects, including the gene expressions associated with the ovarian circadian clock (e.g., Rora, E4bp4, Rev-erbα, Per2 and Dbp) and locomotor activity. Additionally, the cytokine array analysis revealed a significant increase in cytokines and growth factors associated with immunomodulation and angiogenesis, including angiogenin. Neutralizing the angiogenin in CM/E2-CM significantly reduced its ability to promote HUVEC tube formation in vitro. Exosomal miRNA analysis revealed the miRNAs involved in targeting the genes associated with POI rescue (PTEN and PDCD4), apoptosis (caspase-3, BIM), estrogen synthesis (CYP19A1), ovarian clock regulation (E4BP4, REV-ERBα) and fibrosis (COL1A1).
Conclusion: This study is the first to demonstrate that, in considering the estrogen niche in ovarian tissue, an estrogen-priming ER+pcMSC secretome achieved ovarian regeneration and restored the circadian rhythm in a CTX-induced POI mouse model. The potential factors involved include angiogenin and exosomal miRNAs in the ER+pcMSC secretome. These findings offer insights into potential stem cell therapies for chemotherapy-induced POI and circadian rhythm disruption.
背景:原发性卵巢功能不全(POI)是卵巢功能早期衰退导致的卵巢功能衰竭。治疗原发性卵巢功能不全的传统方法效果不佳,基于间充质干细胞(MSCs)的治疗方法成为一种选择。然而,由于缺乏对卵巢组织中雌激素位点的考虑,间充质干细胞治疗 POI 的疗效大打折扣,其机制也不明确。此外,与 POI 相关的昼夜节律紊乱问题之前也未涉及:方法:由雌激素受体阳性间充质干细胞(ER+pcMSCs)产生条件培养基(CM)和雌二醇条件培养基(E2-CM)。使用环磷酰胺(CTX)或4-氢过氧环磷酰胺(4-OH-CP)处理的C57BL/6小鼠(体内)和KGN细胞(体外)建立了化疗诱导的POI模型。使用 RT-qPCR、Western 印迹和免疫组化检测基因/蛋白质表达。对运动活动进行监测,以确定行为的昼夜节律性。细胞因子阵列和 miRNA 分析用于分析 CM/E2-CM 的潜在因素:结果:ER+pcMSCs(CM和E2-CM)的分泌组显著减少了CTX诱导的卵泡生成和昼夜节律缺陷。CM/E2-CM还减少了颗粒细胞凋亡,并挽救了POI卵巢组织的血管生成。E2-CM 的效果比 CM 更好。值得注意的是,ER+pcMSC 分泌组恢复了 CTX 诱导的昼夜节律缺陷,包括与卵巢昼夜节律相关的基因表达(如 Rora、E4bp4、Rev-erbα、Per2 和 Dbp)和运动活性。此外,细胞因子阵列分析显示,与免疫调节和血管生成有关的细胞因子和生长因子(包括血管生成素)显著增加。中和 CM/E2-CM 中的血管生成素可显著降低其在体外促进 HUVEC 管形成的能力。外泌体 miRNA 分析显示,miRNAs 参与靶向与 POI 挽救(PTEN 和 PDCD4)、细胞凋亡(caspase-3、BIM)、雌激素合成(CYP19A1)、卵巢时钟调节(E4BP4、REV-ERBα)和纤维化(COL1A1)相关的基因:本研究首次证明,考虑到卵巢组织中的雌激素生态位,雌激素刺激ER+pcMSC分泌组实现了卵巢再生,并在CTX诱导的POI小鼠模型中恢复了昼夜节律。其中涉及的潜在因素包括血管生成素和ER+pcMSC分泌组中的外泌体miRNA。这些发现为潜在干细胞疗法治疗化疗诱导的POI和昼夜节律紊乱提供了启示。
{"title":"Secretome from estrogen-responding human placenta-derived mesenchymal stem cells rescues ovarian function and circadian rhythm in mice with cyclophosphamide-induced primary ovarian insufficiency.","authors":"Duy-Cuong Le, Mai-Huong T Ngo, Yung-Che Kuo, Shu-Hwa Chen, Chung-Yen Lin, Thai-Yen Ling, Quoc Thao Trang Pham, Heng-Kien Au, Jihwan Myung, Yen-Hua Huang","doi":"10.1186/s12929-024-01085-8","DOIUrl":"10.1186/s12929-024-01085-8","url":null,"abstract":"<p><strong>Background: </strong>Primary ovarian insufficiency (POI) is an early decline in ovarian function that leads to ovarian failure. Conventional treatments for POI are inadequate, and treatments based on mesenchymal stem cells (MSCs) have emerged as an option. However, the lack of consideration of the estrogen niche in ovarian tissue significantly reduces the therapeutic efficacy, with an unclear mechanism in the MSCs in POI treatment. Furthermore, the disruption of circadian rhythm associated with POI has not been previously addressed.</p><p><strong>Methods: </strong>Conditioned medium (CM) and estradiol-conditioned medium (E2-CM) were generated from estrogen receptor positive MSCs (ER<sup>+</sup>pcMSCs). Chemotherapy-induced POI models were established using C57BL/6 mice (in vivo) and KGN cells (in vitro) treated with cyclophosphamide (CTX) or 4-hydroperoxycyclophosphamide (4-OOH-CP). Gene/protein expressions were detected using RT-qPCR, Western blotting, and immunohistochemistry assays. Locomotor activity was monitored for behavioral circadian rhythmicity. Cytokine arrays and miRNA analysis were conducted to analyze potential factors within CM/E2-CM.</p><p><strong>Results: </strong>The secretome of ER<sup>+</sup>pcMSCs (CM and E2-CM) significantly reduced the CTX-induced defects in ovarian folliculogenesis and circadian rhythm. CM/E2-CM also reduced granulosa cell apoptosis and rescued angiogenesis in POI ovarian tissues. E2-CM had a more favorable effect than the CM. Notably, ER<sup>+</sup>pcMSC secretome restored CTX-induced circadian rhythm defects, including the gene expressions associated with the ovarian circadian clock (e.g., Rora, E4bp4, Rev-erbα, Per2 and Dbp) and locomotor activity. Additionally, the cytokine array analysis revealed a significant increase in cytokines and growth factors associated with immunomodulation and angiogenesis, including angiogenin. Neutralizing the angiogenin in CM/E2-CM significantly reduced its ability to promote HUVEC tube formation in vitro. Exosomal miRNA analysis revealed the miRNAs involved in targeting the genes associated with POI rescue (PTEN and PDCD4), apoptosis (caspase-3, BIM), estrogen synthesis (CYP19A1), ovarian clock regulation (E4BP4, REV-ERBα) and fibrosis (COL1A1).</p><p><strong>Conclusion: </strong>This study is the first to demonstrate that, in considering the estrogen niche in ovarian tissue, an estrogen-priming ER<sup>+</sup>pcMSC secretome achieved ovarian regeneration and restored the circadian rhythm in a CTX-induced POI mouse model. The potential factors involved include angiogenin and exosomal miRNAs in the ER<sup>+</sup>pcMSC secretome. These findings offer insights into potential stem cell therapies for chemotherapy-induced POI and circadian rhythm disruption.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"95"},"PeriodicalIF":9.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1186/s12929-024-01082-x
Wei-Yu Chi, Yingying Hu, Hsin-Che Huang, Hui-Hsuan Kuo, Shu-Hong Lin, Chun-Tien Jimmy Kuo, Julia Tao, Darrell Fan, Yi-Min Huang, Annie A Wu, Chien-Fu Hung, T-C Wu
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
{"title":"Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens.","authors":"Wei-Yu Chi, Yingying Hu, Hsin-Che Huang, Hui-Hsuan Kuo, Shu-Hong Lin, Chun-Tien Jimmy Kuo, Julia Tao, Darrell Fan, Yi-Min Huang, Annie A Wu, Chien-Fu Hung, T-C Wu","doi":"10.1186/s12929-024-01082-x","DOIUrl":"10.1186/s12929-024-01082-x","url":null,"abstract":"<p><p>Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"94"},"PeriodicalIF":9.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1186/s12929-024-01079-6
Linbin Zhou, Danny Siu-Chun Ng, Jason C Yam, Li Jia Chen, Clement C Tham, Chi Pui Pang, Wai Kit Chu
{"title":"Correction: Post-translational modifications on the retinoblastoma protein.","authors":"Linbin Zhou, Danny Siu-Chun Ng, Jason C Yam, Li Jia Chen, Clement C Tham, Chi Pui Pang, Wai Kit Chu","doi":"10.1186/s12929-024-01079-6","DOIUrl":"https://doi.org/10.1186/s12929-024-01079-6","url":null,"abstract":"","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"98"},"PeriodicalIF":9.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1186/s12929-024-01063-0
Yu-De Chu, Mi-Chi Chen, Chau-Ting Yeh, Ming-Wei Lai
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
最近,探索细胞外囊泡 (EV) 在病毒传播和复制中的作用的研究取得了进展,揭示了甲型肝炎 (HAV)、乙型肝炎 (HBV)、丙型肝炎 (HCV)、丁型肝炎 (HDV) 和戊型肝炎 (HEV) 等致肝病毒。虽然以前的研究已经发现了这些病毒利用细胞 EV 途径进行复制和传播的能力,但大多数研究都侧重于外泌体途径的影响。随着对 EVs 认识的加深,人们根据其大小和生物生成途径将其分为四种主要亚型,包括外泌体、微囊泡、大型核小体和凋亡体。然而,在总结最新发现和概述与肝病毒有关的EV研究的未来前景的综合综述方面仍存在明显的差距。本综述旨在整合对肝毒性病毒所利用的EV途径的见解,为该领域未来的研究方向提供指导。通过了解各种不同的肝病毒相关 EV 及其在生产性病毒感染期间在细胞通讯中的作用,本综述可能会为靶向治疗和制定策略提供有价值的见解,以对抗毒性肝病毒感染和相关的肝癌发病率。
{"title":"Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects.","authors":"Yu-De Chu, Mi-Chi Chen, Chau-Ting Yeh, Ming-Wei Lai","doi":"10.1186/s12929-024-01063-0","DOIUrl":"10.1186/s12929-024-01063-0","url":null,"abstract":"<p><p>Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"97"},"PeriodicalIF":9.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1186/s12929-024-01081-y
Maria Vitoria Tofolo, Fernanda Costa Brandão Berti, Emanuelle Nunes-Souza, Mayara Oliveira Ruthes, Lucas Freitas Berti, Aline Simoneti Fonseca, Daiane Rosolen, Luciane Regina Cavalli
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
{"title":"Non-coding RNAs as modulators of radioresponse in triple-negative breast cancer: a systematic review.","authors":"Maria Vitoria Tofolo, Fernanda Costa Brandão Berti, Emanuelle Nunes-Souza, Mayara Oliveira Ruthes, Lucas Freitas Berti, Aline Simoneti Fonseca, Daiane Rosolen, Luciane Regina Cavalli","doi":"10.1186/s12929-024-01081-y","DOIUrl":"10.1186/s12929-024-01081-y","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"93"},"PeriodicalIF":9.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}