首页 > 最新文献

Journal of Biomedical Science最新文献

英文 中文
Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-03-06 DOI: 10.1186/s12929-025-01128-8
Bahar Aksan, Daniela Mauceri

Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.

{"title":"Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure.","authors":"Bahar Aksan, Daniela Mauceri","doi":"10.1186/s12929-025-01128-8","DOIUrl":"https://doi.org/10.1186/s12929-025-01128-8","url":null,"abstract":"<p><p>Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"33"},"PeriodicalIF":9.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological functions and therapeutic applications of human mucosal-associated invariant T cells. 人类粘膜相关不变 T 细胞的生物功能和治疗应用。
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-03-01 DOI: 10.1186/s12929-025-01125-x
Ying Fang, Yuning Chen, Siyue Niu, Zibai Lyu, Yanxin Tian, Xinyuan Shen, Yan-Ruide Li, Lili Yang

Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.

{"title":"Biological functions and therapeutic applications of human mucosal-associated invariant T cells.","authors":"Ying Fang, Yuning Chen, Siyue Niu, Zibai Lyu, Yanxin Tian, Xinyuan Shen, Yan-Ruide Li, Lili Yang","doi":"10.1186/s12929-025-01125-x","DOIUrl":"10.1186/s12929-025-01125-x","url":null,"abstract":"<p><p>Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"32"},"PeriodicalIF":9.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-28 DOI: 10.1186/s12929-025-01124-y
Yun-Kai Lin, Yu-Fei Pan, Tian-Yi Jiang, Yi-Bin Chen, Tai-Yu Shang, Meng-You Xu, Hui-Bo Feng, Yun-Han Ma, Ye-Xiong Tan, Hong-Yang Wang, Li-Wei Dong

Background: Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive.

Methods: In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice.

Results: Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity.

Conclusions: This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.

{"title":"Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice.","authors":"Yun-Kai Lin, Yu-Fei Pan, Tian-Yi Jiang, Yi-Bin Chen, Tai-Yu Shang, Meng-You Xu, Hui-Bo Feng, Yun-Han Ma, Ye-Xiong Tan, Hong-Yang Wang, Li-Wei Dong","doi":"10.1186/s12929-025-01124-y","DOIUrl":"10.1186/s12929-025-01124-y","url":null,"abstract":"<p><strong>Background: </strong>Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive.</p><p><strong>Methods: </strong>In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice.</p><p><strong>Results: </strong>Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity.</p><p><strong>Conclusions: </strong>This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"31"},"PeriodicalIF":9.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-21 DOI: 10.1186/s12929-025-01123-z
Yu-Fu Wu, Jun-An Chen, Yuh-Jyh Jong

In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap for developing gene therapies for other neurodegenerative diseases.

{"title":"Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications.","authors":"Yu-Fu Wu, Jun-An Chen, Yuh-Jyh Jong","doi":"10.1186/s12929-025-01123-z","DOIUrl":"10.1186/s12929-025-01123-z","url":null,"abstract":"<p><p>In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap for developing gene therapies for other neurodegenerative diseases.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"30"},"PeriodicalIF":9.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-structural protein 1 substitution of dengue virus enhances viral replication by interfering with the antiviral signaling pathway.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1186/s12929-024-01116-4
Jing-Ru Hee, Dayna Cheng, Yu-Hong Chen, Sheng-Hsuan Wang, Chiao-Hsuan Chao, Sheng-Wen Huang, Pin Ling, Shu-Wen Wan, Chih-Peng Chang, Justin Jang Hann Chu, Trai-Ming Yeh, Jen-Ren Wang

Background: The largest dengue virus 2 (DENV2) outbreak occurred in Taiwan in 2015, resulting in many fatalities. We therefore aim to identify crucial genetic variations which determine the virulence of the 2015 Taiwan outbreak strains.

Methods: We compared the 2015 Taiwan DENV2 sequences to the pre-2015 sequences. Reverse genetics (rg) viruses with substitutions were produced and the viral growth kinetics were investigated. We treated A549 cells with interferon (IFN) to determine the interferon-stimulated genes (ISGs) expression and STAT1 phosphorylation in the rg viral infection and plasmid transfection systems. IFN and pro-inflammatory cytokines levels were measured upon DENV infection using ELISA.

Results: The rgNS1-K272R mutant showed faster replication in IFN-I producing cells compared to wildtype (WT) virus. Results revealed that NS1-K272R substitution contributed to higher soluble NS1 secretion and evade the antiviral response by suppressing the expression of ISGs and STAT1 phosphorylation compared to NS1-WT. Infection with rgNS1-K272R induced higher secretion of pro-inflammatory cytokines through the activation of canonical nuclear factor-kappa B (NF-κB) signaling pathway.

Conclusions: Our results revealed that the DENV NS1 amino acid substitution affects the NS1 ability in immune evasion, which may contribute to the largest dengue outbreak in Taiwan since the 1990s.

{"title":"A non-structural protein 1 substitution of dengue virus enhances viral replication by interfering with the antiviral signaling pathway.","authors":"Jing-Ru Hee, Dayna Cheng, Yu-Hong Chen, Sheng-Hsuan Wang, Chiao-Hsuan Chao, Sheng-Wen Huang, Pin Ling, Shu-Wen Wan, Chih-Peng Chang, Justin Jang Hann Chu, Trai-Ming Yeh, Jen-Ren Wang","doi":"10.1186/s12929-024-01116-4","DOIUrl":"10.1186/s12929-024-01116-4","url":null,"abstract":"<p><strong>Background: </strong>The largest dengue virus 2 (DENV2) outbreak occurred in Taiwan in 2015, resulting in many fatalities. We therefore aim to identify crucial genetic variations which determine the virulence of the 2015 Taiwan outbreak strains.</p><p><strong>Methods: </strong>We compared the 2015 Taiwan DENV2 sequences to the pre-2015 sequences. Reverse genetics (rg) viruses with substitutions were produced and the viral growth kinetics were investigated. We treated A549 cells with interferon (IFN) to determine the interferon-stimulated genes (ISGs) expression and STAT1 phosphorylation in the rg viral infection and plasmid transfection systems. IFN and pro-inflammatory cytokines levels were measured upon DENV infection using ELISA.</p><p><strong>Results: </strong>The rgNS1-K272R mutant showed faster replication in IFN-I producing cells compared to wildtype (WT) virus. Results revealed that NS1-K272R substitution contributed to higher soluble NS1 secretion and evade the antiviral response by suppressing the expression of ISGs and STAT1 phosphorylation compared to NS1-WT. Infection with rgNS1-K272R induced higher secretion of pro-inflammatory cytokines through the activation of canonical nuclear factor-kappa B (NF-κB) signaling pathway.</p><p><strong>Conclusions: </strong>Our results revealed that the DENV NS1 amino acid substitution affects the NS1 ability in immune evasion, which may contribute to the largest dengue outbreak in Taiwan since the 1990s.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"25"},"PeriodicalIF":9.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-193b-3p suppresses lung cancer cell migration and invasion through PRNP targeting.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1186/s12929-025-01121-1
Hsiang-Ling Ho, Shin-Chih Lin, Chao-Wei Chiang, Ching Lin, Che-Wei Liu, Yi-Chen Yeh, Mei-Yu Chen, Teh-Ying Chou

Background: Tumor metastasis is responsible for approximately 90% of mortality in lung cancer. Understanding the molecular mechanisms of lung cancer metastasis is crucial for developing new treatment strategies. Cellular prion protein (PrPc), encoded by PRNP gene, was previously found to enhance lung cancer invasiveness. However, research on the post-transcriptional regulation of PRNP remains limited.

Methods: Dual-luciferase reporter assays identified miRNAs targeting the PRNP 3'-UTR, and RNA immunoprecipitation (RIP) confirmed the interaction between miR-193b-3p and PRNP mRNA. Promoter deletions and chromatin immunoprecipitation (ChIP) assays established c-Jun as a transcriptional repressor of miR-193b-3p. Functional validation of the c-Jun-miR-193b-3p-PrPc axis was conducted using transwell assays, LNA-in situ hybridization, RT-PCR, Western blot, and immunohistochemistry. Subcutaneous mouse xenograft models assessed the anti-tumor effects of miR-193b-3p in vivo.

Results: We demonstrated that miR-193b-3p downregulates PrPc expression by directly targeting the 3'-UTR of PRNP. Overexpression of miR-193b-3p significantly suppressed PRNP expression at both mRNA and protein levels, and reduced lung cancer cell migration, invasion and proliferation, which was reversed by PrPc overexpression. Conversely, miR-193b-3p silencing enhanced PRNP expression as well as those oncogenic properties, which were mitigated by PRNP knockdown. Spearman correlation analysis revealed a significant negative association between miR-193b-3p and PrPc expression in lung cancer tissues (p = 0.017), and Kaplan-Meier survival analysis demonstrated that high PrPc (p = 0.039) or low miR-193b-3p (p = 0.027) expression correlated with poorer overall survival. Intra-tumoral injection of the miR-193b-3p mimic in mouse xenograft models significantly reduced tumor volume. In addition, c-Jun was identified as a transcriptional repressor of miR-193b-3p. Functional studies revealed that c-Jun knockdown inhibited lung cancer cell migration, invasion, and proliferation, effects that were reversed by either PrPc overexpression or miR-193b-3p inhibitor treatment. A significant association between PrPc and c-Jun expression in lung cancer tissues (p = 0.004) was observed. High expression of PrPc and/or c-Jun was found to be associated with poor overall survival of patients (p < 0.05).

Conclusions: This study is the first to uncover a novel regulatory pathway where c-Jun acts as a transcriptional repressor of miR-193b-3p, leading to PRNP upregulation, which promotes lung cancer migration and invasion. This previously unrecognized c-Jun-miR-193b-3p-PrPc axis also provides valuable insights for the potential development of new therapeutic strategies against lung cancer metastasis through RNA-targeting technology.

{"title":"miR-193b-3p suppresses lung cancer cell migration and invasion through PRNP targeting.","authors":"Hsiang-Ling Ho, Shin-Chih Lin, Chao-Wei Chiang, Ching Lin, Che-Wei Liu, Yi-Chen Yeh, Mei-Yu Chen, Teh-Ying Chou","doi":"10.1186/s12929-025-01121-1","DOIUrl":"10.1186/s12929-025-01121-1","url":null,"abstract":"<p><strong>Background: </strong>Tumor metastasis is responsible for approximately 90% of mortality in lung cancer. Understanding the molecular mechanisms of lung cancer metastasis is crucial for developing new treatment strategies. Cellular prion protein (PrPc), encoded by PRNP gene, was previously found to enhance lung cancer invasiveness. However, research on the post-transcriptional regulation of PRNP remains limited.</p><p><strong>Methods: </strong>Dual-luciferase reporter assays identified miRNAs targeting the PRNP 3'-UTR, and RNA immunoprecipitation (RIP) confirmed the interaction between miR-193b-3p and PRNP mRNA. Promoter deletions and chromatin immunoprecipitation (ChIP) assays established c-Jun as a transcriptional repressor of miR-193b-3p. Functional validation of the c-Jun-miR-193b-3p-PrPc axis was conducted using transwell assays, LNA-in situ hybridization, RT-PCR, Western blot, and immunohistochemistry. Subcutaneous mouse xenograft models assessed the anti-tumor effects of miR-193b-3p in vivo.</p><p><strong>Results: </strong>We demonstrated that miR-193b-3p downregulates PrPc expression by directly targeting the 3'-UTR of PRNP. Overexpression of miR-193b-3p significantly suppressed PRNP expression at both mRNA and protein levels, and reduced lung cancer cell migration, invasion and proliferation, which was reversed by PrPc overexpression. Conversely, miR-193b-3p silencing enhanced PRNP expression as well as those oncogenic properties, which were mitigated by PRNP knockdown. Spearman correlation analysis revealed a significant negative association between miR-193b-3p and PrPc expression in lung cancer tissues (p = 0.017), and Kaplan-Meier survival analysis demonstrated that high PrPc (p = 0.039) or low miR-193b-3p (p = 0.027) expression correlated with poorer overall survival. Intra-tumoral injection of the miR-193b-3p mimic in mouse xenograft models significantly reduced tumor volume. In addition, c-Jun was identified as a transcriptional repressor of miR-193b-3p. Functional studies revealed that c-Jun knockdown inhibited lung cancer cell migration, invasion, and proliferation, effects that were reversed by either PrPc overexpression or miR-193b-3p inhibitor treatment. A significant association between PrPc and c-Jun expression in lung cancer tissues (p = 0.004) was observed. High expression of PrPc and/or c-Jun was found to be associated with poor overall survival of patients (p < 0.05).</p><p><strong>Conclusions: </strong>This study is the first to uncover a novel regulatory pathway where c-Jun acts as a transcriptional repressor of miR-193b-3p, leading to PRNP upregulation, which promotes lung cancer migration and invasion. This previously unrecognized c-Jun-miR-193b-3p-PrPc axis also provides valuable insights for the potential development of new therapeutic strategies against lung cancer metastasis through RNA-targeting technology.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"28"},"PeriodicalIF":9.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The zinc finger protein ZFP36L2 inhibits flavivirus infection via the 5'-3' XRN1-mediated RNA decay pathway in the replication complexes.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1186/s12929-025-01122-0
Ren-Jye Lin, Li-Hsiung Lin, Zih-Ping Chen, Bing-Cheng Liu, Pin-Chen Ko, Ching-Len Liao

Background: The zinc finger protein 36-like (ZFP36L) family is a CCCH-type group consisting of RNA-binding proteins, i.e., ZFP36L1 and ZFP36L2, which regulate cellular mRNA through the RNA decay pathway. ZFP36L1 combats flavivirus infections through the 5'-3' XRN1 and 3'-5' RNA exosome decay pathways. The present study clarified the role of human ZFP36L2 in the defense response of the host against flavivirus infection.

Methods: Cell lines with overexpression or knockdown of ZFP36L2 were established using lentiviral vectors carrying genes for overexpression and short-hairpin RNA targeting specific genes, respectively. A plaque assay was employed to determine the viral titer. Immunofluorescence and real-time quantitative polymerase chain reaction were used to measure the viral RNA levels. The in vitro-transcribed RNA transcript derived from a replication-dead Japanese encephalitis virus (JEV) replicon containing the renilla luciferase reporter gene (J-R2A-NS5mt) was used to assess the stability of the flavivirus RNA. An RNA immunoprecipitation assay was used to detect the protein-RNA binding ability. Confocal microscopic images were captured to analyze protein colocalization.

Results: ZFP36L2 served as an innate host defender against JEV and dengue virus. ZFP36L2 inhibited flavivirus infection solely through the 5'-3' XRN1 RNA decay pathway, whereas ZFP36L1 inhibited JEV infection via the 5'-3' XRN1 and 3'-5' RNA exosome RNA decay pathways. The direct binding between viral RNA and ZFP36L2 via its CCCH-type zinc finger motifs facilitated the degradation of flavivirus RNA mediated by 5'-3' XRN1. Furthermore, ZFP36L2 was localized in processing bodies (PBs), which participate in the 5'-3' XRN1-mediated RNA decay pathway. Nonetheless, the disruption of PBs did not affect the antiviral activity of ZFP36L2, suggesting that its localization is not essential for the function of the protein. Interestingly, the colocalization of ZFP36L2 and XRN1 with viral RNA and NS3 revealed that the antiviral activity of ZFP36L2 occurred within the replication complexes (RCs).

Conclusions: In summary, ZFP36L2 bound to and degraded viral RNA through the XRN1-mediated RNA decay pathway in the RCs, thereby inhibiting flavivirus replication. These findings provide valuable insights into the diverse antiviral mechanisms of the ZFP36-like family of proteins in the innate immune response against flavivirus infection.

{"title":"The zinc finger protein ZFP36L2 inhibits flavivirus infection via the 5'-3' XRN1-mediated RNA decay pathway in the replication complexes.","authors":"Ren-Jye Lin, Li-Hsiung Lin, Zih-Ping Chen, Bing-Cheng Liu, Pin-Chen Ko, Ching-Len Liao","doi":"10.1186/s12929-025-01122-0","DOIUrl":"10.1186/s12929-025-01122-0","url":null,"abstract":"<p><strong>Background: </strong>The zinc finger protein 36-like (ZFP36L) family is a CCCH-type group consisting of RNA-binding proteins, i.e., ZFP36L1 and ZFP36L2, which regulate cellular mRNA through the RNA decay pathway. ZFP36L1 combats flavivirus infections through the 5'-3' XRN1 and 3'-5' RNA exosome decay pathways. The present study clarified the role of human ZFP36L2 in the defense response of the host against flavivirus infection.</p><p><strong>Methods: </strong>Cell lines with overexpression or knockdown of ZFP36L2 were established using lentiviral vectors carrying genes for overexpression and short-hairpin RNA targeting specific genes, respectively. A plaque assay was employed to determine the viral titer. Immunofluorescence and real-time quantitative polymerase chain reaction were used to measure the viral RNA levels. The in vitro-transcribed RNA transcript derived from a replication-dead Japanese encephalitis virus (JEV) replicon containing the renilla luciferase reporter gene (J-R2A-NS5mt) was used to assess the stability of the flavivirus RNA. An RNA immunoprecipitation assay was used to detect the protein-RNA binding ability. Confocal microscopic images were captured to analyze protein colocalization.</p><p><strong>Results: </strong>ZFP36L2 served as an innate host defender against JEV and dengue virus. ZFP36L2 inhibited flavivirus infection solely through the 5'-3' XRN1 RNA decay pathway, whereas ZFP36L1 inhibited JEV infection via the 5'-3' XRN1 and 3'-5' RNA exosome RNA decay pathways. The direct binding between viral RNA and ZFP36L2 via its CCCH-type zinc finger motifs facilitated the degradation of flavivirus RNA mediated by 5'-3' XRN1. Furthermore, ZFP36L2 was localized in processing bodies (PBs), which participate in the 5'-3' XRN1-mediated RNA decay pathway. Nonetheless, the disruption of PBs did not affect the antiviral activity of ZFP36L2, suggesting that its localization is not essential for the function of the protein. Interestingly, the colocalization of ZFP36L2 and XRN1 with viral RNA and NS3 revealed that the antiviral activity of ZFP36L2 occurred within the replication complexes (RCs).</p><p><strong>Conclusions: </strong>In summary, ZFP36L2 bound to and degraded viral RNA through the XRN1-mediated RNA decay pathway in the RCs, thereby inhibiting flavivirus replication. These findings provide valuable insights into the diverse antiviral mechanisms of the ZFP36-like family of proteins in the innate immune response against flavivirus infection.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"27"},"PeriodicalIF":9.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EGF receptor in organ development, tissue homeostasis and regeneration.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12929-025-01119-9
Claudia Tito, Silvia Masciarelli, Gianni Colotti, Francesco Fazi

The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.

{"title":"EGF receptor in organ development, tissue homeostasis and regeneration.","authors":"Claudia Tito, Silvia Masciarelli, Gianni Colotti, Francesco Fazi","doi":"10.1186/s12929-025-01119-9","DOIUrl":"10.1186/s12929-025-01119-9","url":null,"abstract":"<p><p>The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"24"},"PeriodicalIF":9.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12929-025-01117-x
Na Wang, Si Wu, Lanxiang Huang, Yue Hu, Xin He, Jourong He, Ben Hu, Yaqi Xu, Yuan Rong, Chunhui Yuan, Xiantao Zeng, Fubing Wang

Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.

{"title":"Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer.","authors":"Na Wang, Si Wu, Lanxiang Huang, Yue Hu, Xin He, Jourong He, Ben Hu, Yaqi Xu, Yuan Rong, Chunhui Yuan, Xiantao Zeng, Fubing Wang","doi":"10.1186/s12929-025-01117-x","DOIUrl":"10.1186/s12929-025-01117-x","url":null,"abstract":"<p><p>Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"23"},"PeriodicalIF":9.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K27-linked RORγt ubiquitination by Nedd4 potentiates Th17-mediated autoimmunity.
IF 9 2区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12929-025-01120-2
Qiuming Zeng, Hui Guo, Na Tang, Pranav S Renavikar, Nitin J Karandikar, Amy E Lovett-Racke, Michael K Racke, Chengkai Yan, Rong Tang, Sushmita Sinha, Krishnendu Ghosh, Jeremy P Ryal, Song Ouyang, Min Chen, Foued Amari, Coppola Vincenzo, R Marshall Pope, Yalan Li, Huan Yang, Wallace Y Langdon, Jian Zhang

Background: The HECT E3 ubiquitin ligase Nedd4 has been shown to positively regulate T cell responses, but its role in T helper (Th) cell differentiation and autoimmunity is unknown. Th17 cells are believed to play a pivotal role in the development and pathogenesis of autoimmune diseases. Nevertheless, the regulation of RORγt activation during Th17 cell differentiation by TCR signaling is yet to be elucidated. These uncharted aspects inspire us to explore the potential role of Nedd4 in Th17-mediated autoimmunity.

Methods: We evaluated the impact of Nedd4 deficiency on mouse T cell development and differentiation using flow cytometry and siRNA transfection, and subsequently validated these findings in T cells from patients with multiple sclerosis (MS). Furthermore, we investigated the influence of Nedd4 deficiency on Th17-mediated autoimmunity through experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Subsequently, we elucidated the molecular mechanism underlying the interaction between Nedd4 and RORgt through immunoprecipitation, mass spectrometry analysis, and lentiviral transduction. Additionally, we identified Nedd4 as an E3 ubiquitin ligase for RORγt. Moreover, we characterized the tyrosine residue sites and polyubiquitination patterns involved in RORγt ubiquitination.

Results: In this study, we report that loss of Nedd4 in T cells specifically impairs pathogenic and non-pathogenic Th17 responses, and Th17-mediated EAE development. At the molecular level, Nedd4 binds to the PPLY motif within the ligand binding domain of RORγt, and targets RORγt at K112 for K27-linked polyubiquitination, thus augmenting its activity.

Conclusion: Nedd4 is a crucial E3 ubiquitin ligase for RORγt in the regulating Th17 cell development and offers potential therapeutic benefits for treating Th17-mediated autoimmune diseases.

{"title":"K27-linked RORγt ubiquitination by Nedd4 potentiates Th17-mediated autoimmunity.","authors":"Qiuming Zeng, Hui Guo, Na Tang, Pranav S Renavikar, Nitin J Karandikar, Amy E Lovett-Racke, Michael K Racke, Chengkai Yan, Rong Tang, Sushmita Sinha, Krishnendu Ghosh, Jeremy P Ryal, Song Ouyang, Min Chen, Foued Amari, Coppola Vincenzo, R Marshall Pope, Yalan Li, Huan Yang, Wallace Y Langdon, Jian Zhang","doi":"10.1186/s12929-025-01120-2","DOIUrl":"10.1186/s12929-025-01120-2","url":null,"abstract":"<p><strong>Background: </strong>The HECT E3 ubiquitin ligase Nedd4 has been shown to positively regulate T cell responses, but its role in T helper (Th) cell differentiation and autoimmunity is unknown. Th17 cells are believed to play a pivotal role in the development and pathogenesis of autoimmune diseases. Nevertheless, the regulation of RORγt activation during Th17 cell differentiation by TCR signaling is yet to be elucidated. These uncharted aspects inspire us to explore the potential role of Nedd4 in Th17-mediated autoimmunity.</p><p><strong>Methods: </strong>We evaluated the impact of Nedd4 deficiency on mouse T cell development and differentiation using flow cytometry and siRNA transfection, and subsequently validated these findings in T cells from patients with multiple sclerosis (MS). Furthermore, we investigated the influence of Nedd4 deficiency on Th17-mediated autoimmunity through experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Subsequently, we elucidated the molecular mechanism underlying the interaction between Nedd4 and RORgt through immunoprecipitation, mass spectrometry analysis, and lentiviral transduction. Additionally, we identified Nedd4 as an E3 ubiquitin ligase for RORγt. Moreover, we characterized the tyrosine residue sites and polyubiquitination patterns involved in RORγt ubiquitination.</p><p><strong>Results: </strong>In this study, we report that loss of Nedd4 in T cells specifically impairs pathogenic and non-pathogenic Th17 responses, and Th17-mediated EAE development. At the molecular level, Nedd4 binds to the PPLY motif within the ligand binding domain of RORγt, and targets RORγt at K112 for K27-linked polyubiquitination, thus augmenting its activity.</p><p><strong>Conclusion: </strong>Nedd4 is a crucial E3 ubiquitin ligase for RORγt in the regulating Th17 cell development and offers potential therapeutic benefits for treating Th17-mediated autoimmune diseases.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"26"},"PeriodicalIF":9.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomedical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1