Power Scalability of 1.55-μm-Wavelength InP-Based Double-Lattice Photonic-Crystal Surface-Emitting Lasers With Stable Continuous-Wave Single-Mode Lasing
{"title":"Power Scalability of 1.55-μm-Wavelength InP-Based Double-Lattice Photonic-Crystal Surface-Emitting Lasers With Stable Continuous-Wave Single-Mode Lasing","authors":"Yuhki Itoh;Takeshi Aoki;Kosuke Fujii;Hiroyuki Yoshinaga;Naoki Fujiwara;Makoto Ogasawara;Yusuke Sawada;Rei Tanaka;Kenichi Machinaga;Hideki Yagi;Masaki Yanagisawa;Masahiro Yoshida;Takuya Inoue;Menaka De Zoysa;Kenji Ishizaki;Susumu Noda","doi":"10.1109/JSTQE.2024.3454202","DOIUrl":null,"url":null,"abstract":"This paper reports on the power scalability of 1.55-μm-wavelength photonic crystal surface emitting lasers (PCSELs) utilizing the design flexibility of the double-lattice photonic crystal. By controlling in-plane optical coupling, we have achieved single-mode continuous-wave lasing with various device sizes ranging from 100 μm to 300 μm in diameter. The output power exceeds 500 mW for a device size of 300 μm, and wall-plug efficiencies of all fabricated devices exceed 18%. Highly stable single-mode lasing with a side-mode suppression ratio over 60 dB is obtained even at the maximum output powers. Narrow circular beams are obtained, and the divergence angles decrease with increasing device size, ranging from 0.55 degrees to 0.23 degrees in FWHM for device sizes from 100 μm and 300 μm, respectively.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-8"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10664463/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on the power scalability of 1.55-μm-wavelength photonic crystal surface emitting lasers (PCSELs) utilizing the design flexibility of the double-lattice photonic crystal. By controlling in-plane optical coupling, we have achieved single-mode continuous-wave lasing with various device sizes ranging from 100 μm to 300 μm in diameter. The output power exceeds 500 mW for a device size of 300 μm, and wall-plug efficiencies of all fabricated devices exceed 18%. Highly stable single-mode lasing with a side-mode suppression ratio over 60 dB is obtained even at the maximum output powers. Narrow circular beams are obtained, and the divergence angles decrease with increasing device size, ranging from 0.55 degrees to 0.23 degrees in FWHM for device sizes from 100 μm and 300 μm, respectively.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.