Pub Date : 2024-10-28DOI: 10.1109/JSTQE.2024.3470357
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Topic Codes and Topics","authors":"","doi":"10.1109/JSTQE.2024.3470357","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470357","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1109/JSTQE.2024.3470351
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Publication Information","authors":"","doi":"10.1109/JSTQE.2024.3470351","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470351","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1109/JSTQE.2024.3470355
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Information for Authors","authors":"","doi":"10.1109/JSTQE.2024.3470355","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470355","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1109/JSTQE.2024.3482528
Lute Maleki
{"title":"Editorial The Future of Microresonator Frequency Comb Technologies","authors":"Lute Maleki","doi":"10.1109/JSTQE.2024.3482528","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482528","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1109/JSTQE.2024.3486672
Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan
Self-assembled quantum dots (QDs) embedded in InGaAs quantum wells (QWs) are used as active regions for photonic-crystal surface-emitting lasers (PCSELs). An epitaxial regrowth method is developed to fabricate the dot-in-well (DWELL) PCSELs. The epitaxial regrowth starts with the growth of a partial laser structure containing bottom cladding, waveguide, active region, and the photonic crystal (PC) layer. The PC layer is patterned to realize the cavity. Subsequently a top cladding layer is regrown to complete the laser structure. During the regrowth of the top cladding layer, the partial laser structure is subjected to high growth temperatures in excess of 600 °C resulting in an unintentional annealing of the active region. This annealing of the active region can alter the QDs by changing their size resulting in a blue shift in photoluminescence (PL) and narrowing PL emission. This effect results in the misaligning of the gain peak and the cavity resonance, resulting in sub-optimal lasing performance. DWELL active regions are known to have better thermal stability compared to both QDs and QWs and could be an ideal candidate for regrown PCSELs. We successfully demonstrate an optically-pumped epitaxially-regrown DWELL PCSEL with an emission wavelength of 1230 nm operating at room temperature. Furthermore, the DWELL active region shows excellent emission wavelength stability and intensity despite the high temperature regrowth process.
{"title":"Thermal Stability of the Dot-in-Well Gain Medium for Photonic Crystal Surface Emitting Lasers","authors":"Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan","doi":"10.1109/JSTQE.2024.3486672","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3486672","url":null,"abstract":"Self-assembled quantum dots (QDs) embedded in InGaAs quantum wells (QWs) are used as active regions for photonic-crystal surface-emitting lasers (PCSELs). An epitaxial regrowth method is developed to fabricate the dot-in-well (DWELL) PCSELs. The epitaxial regrowth starts with the growth of a partial laser structure containing bottom cladding, waveguide, active region, and the photonic crystal (PC) layer. The PC layer is patterned to realize the cavity. Subsequently a top cladding layer is regrown to complete the laser structure. During the regrowth of the top cladding layer, the partial laser structure is subjected to high growth temperatures in excess of 600 °C resulting in an unintentional annealing of the active region. This annealing of the active region can alter the QDs by changing their size resulting in a blue shift in photoluminescence (PL) and narrowing PL emission. This effect results in the misaligning of the gain peak and the cavity resonance, resulting in sub-optimal lasing performance. DWELL active regions are known to have better thermal stability compared to both QDs and QWs and could be an ideal candidate for regrown PCSELs. We successfully demonstrate an optically-pumped epitaxially-regrown DWELL PCSEL with an emission wavelength of 1230 nm operating at room temperature. Furthermore, the DWELL active region shows excellent emission wavelength stability and intensity despite the high temperature regrowth process.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/JSTQE.2024.3484669
Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle
Current progress in the scaling of continuous wave optical output power and conversion efficiency of broad-area GaAs-based edge emitters, broad-area lasers (BALs), operating in the 900…1000 nm wavelength range is presented. Device research and engineering efforts have ensured that BALs remain the most efficient of all light sources, so that in the past 10 years, power conversion efficiency at 20 W continuous wave (CW) output power from BA lasers with a 90…100 μm wide stripe has increased 1.5-fold to 57% (via epitaxial layer design developments), whilst peak CW power per single emitter has increased around 3-fold to 70 W (via scaling of device size), with further scaling underway, for example via use of multi-junction designs. However, the peak achievable CW power conversion efficiency and CW specific output power (defined here as peak output power from a 100 μm stripe diode lasers with a single p-n junction) has changed remarkably little, remaining around 70% and 25 W, respectively, for the past decade. Fortunately, research to understand the limits to peak efficiency and specific output power has also shown progress. Specifically, recent studies indicate that spatial non-uniformity in optical field and temperature play a major role in limiting both power and conversion efficiency. Technological efforts motivated by these discoveries to flatten lateral and longitudinal temperature profiles have successfully increased both power and efficiency. In addition, epitaxial layer designs with very high modal gain successfully reduce threshold current and increase slope at 25 °C to values comparable to those observed at 200 K, offering a path toward the 80% conversion efficiency range currently seen only at these cryogenic temperatures. Overall, whilst operating efficiency and power continue to scale rapidly, a technological path for increased specific power and peak efficiency is also emerging.
本文介绍了在 900...1000 纳米波长范围内工作的基于砷化镓的广域边缘发射器--广域激光器 (BAL) 的连续波光输出功率和转换效率的扩展方面的最新进展。器件研究和工程设计工作确保了 BALs 始终是所有光源中效率最高的光源,因此在过去 10 年中,具有 90...100 μm 宽条纹的 BA 激光器在 20 W 连续波 (CW) 输出功率下的功率转换效率提高了 1.5 倍,达到 57%(通过外延层设计开发),而单个发射器的峰值 CW 功率提高了约 3 倍,达到 70 W(通过器件尺寸扩展),并且还在进一步扩展,例如通过使用多结设计。然而,可实现的峰值 CW 功率转换效率和 CW 特定输出功率(此处定义为具有单 p-n 结的 100 μm 条纹二极管激光器的峰值输出功率)却变化甚微,在过去十年中分别保持在 70% 和 25 W 左右。幸运的是,了解峰值效率和特定输出功率极限的研究也取得了进展。具体来说,最近的研究表明,光场和温度的空间不均匀性在限制功率和转换效率方面发挥了重要作用。在这些发现的推动下,平整横向和纵向温度曲线的技术努力已成功提高了功率和效率。此外,具有极高模态增益的外延层设计成功地降低了阈值电流,并将 25 °C 时的斜率提高到与 200 K 时观察到的数值相当,为实现目前只有在这些低温条件下才能看到的 80% 转换效率范围提供了一条途径。总之,在工作效率和功率继续快速增长的同时,提高比功率和峰值效率的技术途径也正在出现。
{"title":"Power and Efficiency Scaling of GaAs-Based Edge-Emitting High-Power Diode Lasers","authors":"Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle","doi":"10.1109/JSTQE.2024.3484669","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3484669","url":null,"abstract":"Current progress in the scaling of continuous wave optical output power and conversion efficiency of broad-area GaAs-based edge emitters, broad-area lasers (BALs), operating in the 900…1000 nm wavelength range is presented. Device research and engineering efforts have ensured that BALs remain the most efficient of all light sources, so that in the past 10 years, power conversion efficiency at 20 W continuous wave (CW) output power from BA lasers with a 90…100 μm wide stripe has increased 1.5-fold to 57% (via epitaxial layer design developments), whilst peak CW power per single emitter has increased around 3-fold to 70 W (via scaling of device size), with further scaling underway, for example via use of multi-junction designs. However, the peak achievable CW power conversion efficiency and CW specific output power (defined here as peak output power from a 100 μm stripe diode lasers with a single p-n junction) has changed remarkably little, remaining around 70% and 25 W, respectively, for the past decade. Fortunately, research to understand the limits to peak efficiency and specific output power has also shown progress. Specifically, recent studies indicate that spatial non-uniformity in optical field and temperature play a major role in limiting both power and conversion efficiency. Technological efforts motivated by these discoveries to flatten lateral and longitudinal temperature profiles have successfully increased both power and efficiency. In addition, epitaxial layer designs with very high modal gain successfully reduce threshold current and increase slope at 25 °C to values comparable to those observed at 200 K, offering a path toward the 80% conversion efficiency range currently seen only at these cryogenic temperatures. Overall, whilst operating efficiency and power continue to scale rapidly, a technological path for increased specific power and peak efficiency is also emerging.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before avalanche breakdown in GeSn/Si APDs for the first time. The spectral response covers 1500 to 1700 nm. The measured punch-through and breakdown voltages are 15 and 17 V, respectively. Undisputed multiplication gain was obtained with the maximum value of 4.5 at 77 K, and 1.4 at 250 K, directly in reference to the saturated primary responsivity from the same device rather than a different GeSn p-i-n photodiode in previous reports. A peak responsivity was measured as 1.12 A/W at 1550 nm and 77 K.
我们展示了用于红外光探测的硅单片生长锗锡雪崩光电二极管(APD)。我们采用了相对较薄的 Ge 缓冲层设计,以允许有效的光载流子从 GeSn 吸收层传输到硅倍增层,从而首次在 GeSn/Si APD 雪崩击穿之前观察到清晰的穿透行为和 1550 纳米波长下 0.3 A/W 的饱和初级响应率。光谱响应范围为 1500 至 1700 纳米。测得的击穿电压和击穿电压分别为 15 V 和 17 V。直接参考同一器件的饱和初级响应率,而不是先前报告中不同的 GeSn pi-n 光电二极管,获得了无可争议的倍增增益,77 K 时的最大值为 4.5,250 K 时的最大值为 1.4。在 1550 纳米和 77 K 波长下测得的峰值响应率为 1.12 A/W。
{"title":"Development of Monolithic Germanium–Tin on Si Avalanche Photodiodes for Infrared Detection","authors":"Justin Rudie;Sylvester Amoah;Xiaoxin Wang;Rajesh Kumar;Grey Abernathy;Steven Akwabli;Perry C. Grant;Jifeng Liu;Baohua Li;Wei Du;Shui-Qing Yu","doi":"10.1109/JSTQE.2024.3482257","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482257","url":null,"abstract":"We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before avalanche breakdown in GeSn/Si APDs for the first time. The spectral response covers 1500 to 1700 nm. The measured punch-through and breakdown voltages are 15 and 17 V, respectively. Undisputed multiplication gain was obtained with the maximum value of 4.5 at 77 K, and 1.4 at 250 K, directly in reference to the saturated primary responsivity from the same device rather than a different GeSn p-i-n photodiode in previous reports. A peak responsivity was measured as 1.12 A/W at 1550 nm and 77 K.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, photonic crystal surface-emitting lasers (PCSELs), a novel design of semiconductor light sources, have shown huge performance improvement. Based on compact semiconductor heterostructures, PCSELs have not only achieved near diffraction limit beam divergence but have also realized single-mode lasing from a broad emission area. Thanks to its planar cavity design, PCSEL cavities can integrate confinement structures laterally, which can potentially achieve performances otherwise unachievable in the current semiconductor lasers. This paper reviews recent advances in PCSELs, including the high-power PCSELs, laterally confined PCSEL design, PCSEL cavity size scaling for high speed, narrow laser linewidth, and coherent PCSEL arrays.
{"title":"Recent Advances in Photonic Crystal Surface Emitting Lasers","authors":"Mingsen Pan;Chhabindra Gautam;Yudong Chen;Thomas Rotter;Ganesh Balakrishnan;Weidong Zhou","doi":"10.1109/JSTQE.2024.3481451","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3481451","url":null,"abstract":"In recent decades, photonic crystal surface-emitting lasers (PCSELs), a novel design of semiconductor light sources, have shown huge performance improvement. Based on compact semiconductor heterostructures, PCSELs have not only achieved near diffraction limit beam divergence but have also realized single-mode lasing from a broad emission area. Thanks to its planar cavity design, PCSEL cavities can integrate confinement structures laterally, which can potentially achieve performances otherwise unachievable in the current semiconductor lasers. This paper reviews recent advances in PCSELs, including the high-power PCSELs, laterally confined PCSEL design, PCSEL cavity size scaling for high speed, narrow laser linewidth, and coherent PCSEL arrays.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1109/JSTQE.2024.3466169
Elaine D. McVay;Robert J. Deri;Salmaan H. Baxamusa;William E. Fenwick;Jiang Li;Joel B. Varley;Daniel E. Mittelberger;Luyang Wang;Kevin P. Pipe;Matthew C. Boisselle;Laina V. Gilmore;Rebecca B. Swertfeger;Mark T. Crowley;Prabhu Thiagarajan;Jiyon Song;Gerald T. Thaler;Christopher F. Schuck;Adam Dusty
This work presents a comprehensive study of early aging behavior (<500>15