Gapped Phases in (2+1)d with Non-Invertible Symmetries: Part I

Lakshya Bhardwaj, Daniel Pajer, Sakura Schafer-Nameki, Apoorv Tiwari, Alison Warman, Jingxiang Wu
{"title":"Gapped Phases in (2+1)d with Non-Invertible Symmetries: Part I","authors":"Lakshya Bhardwaj, Daniel Pajer, Sakura Schafer-Nameki, Apoorv Tiwari, Alison Warman, Jingxiang Wu","doi":"arxiv-2408.05266","DOIUrl":null,"url":null,"abstract":"We use the Symmetry Topological Field Theory (SymTFT) to study and classify\ngapped phases in (2+1)d for a class of categorical symmetries, referred to as\nbeing of bosonic type. The SymTFTs for these symmetries are given by twisted\nand untwisted (3+1)d Dijkgraaf-Witten (DW) theories for finite groups G. A\nfinite set of boundary conditions (BCs) of these DW theories is well-known:\nthese simply involve imposing Dirichlet and Neumann conditions on the (3+1)d\ngauge fields. We refer to these as minimal BCs. The key new observation here is\nthat for each DW theory, there exists an infinite number of other BCs, that we\ncall non-minimal BCs. These non-minimal BCs are all obtained by a 'theta\nconstruction', which involves stacking the Dirichlet BC with 3d TFTs having G\n0-form symmetry, and gauging the diagonal G symmetry. On the one hand, using\nthe non-minimal BCs as symmetry BCs gives rise to an infinite number of\nnon-invertible symmetries having the same SymTFT, while on the other hand,\nusing the non-minimal BCs as physical BCs in the sandwich construction gives\nrise to an infinite number of (2+1)d gapped phases for each such non-invertible\nsymmetry. Our analysis is thoroughly exemplified for G = $\\mathbb{Z_2}$ and\nmore generally any finite abelian group, for which the resulting non-invertible\nsymmetries and their gapped phases already reveal an immensely rich structure.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use the Symmetry Topological Field Theory (SymTFT) to study and classify gapped phases in (2+1)d for a class of categorical symmetries, referred to as being of bosonic type. The SymTFTs for these symmetries are given by twisted and untwisted (3+1)d Dijkgraaf-Witten (DW) theories for finite groups G. A finite set of boundary conditions (BCs) of these DW theories is well-known: these simply involve imposing Dirichlet and Neumann conditions on the (3+1)d gauge fields. We refer to these as minimal BCs. The key new observation here is that for each DW theory, there exists an infinite number of other BCs, that we call non-minimal BCs. These non-minimal BCs are all obtained by a 'theta construction', which involves stacking the Dirichlet BC with 3d TFTs having G 0-form symmetry, and gauging the diagonal G symmetry. On the one hand, using the non-minimal BCs as symmetry BCs gives rise to an infinite number of non-invertible symmetries having the same SymTFT, while on the other hand, using the non-minimal BCs as physical BCs in the sandwich construction gives rise to an infinite number of (2+1)d gapped phases for each such non-invertible symmetry. Our analysis is thoroughly exemplified for G = $\mathbb{Z_2}$ and more generally any finite abelian group, for which the resulting non-invertible symmetries and their gapped phases already reveal an immensely rich structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非不可逆对称性的 (2+1)d 中的空隙相位:第一部分
我们使用对称拓扑场理论(SymTFT)来研究和分类一类分类对称(被称为玻色类型)的(2+1)d中的隙相。这些对称性的 SymTFTs 是由有限群 G 的扭曲和非扭曲 (3+1)d Dijkgraaf-Witten (DW) 理论给出的。这些 DW 理论的边界条件(BCs)是众所周知的:这些条件只涉及对 (3+1)dge 场施加 Dirichlet 和 Neumann 条件。我们把它们称为最小边界条件。这里的关键新发现是,对于每一个DW理论,都存在着无限多的其他BC,我们称之为非最小BC。这些非最小 BC 都是通过 "thetaconstruction "得到的,其中包括用具有 G0 形式对称性的 3d TFT 堆叠 Dirichlet BC,并对对角线 G 对称性进行测量。一方面,使用非最小 BC 作为对称 BC 会产生无数个具有相同 SymTFT 的非不可逆对称;另一方面,在三明治结构中使用非最小 BC 作为物理 BC 会为每个非不可逆对称产生无数个 (2+1)d 间隙相。我们的分析对 G = $\mathbb{Z_2}$ 以及更广义的任何有限无性群都做了详尽的举例说明,由此产生的非不对称及其间隙相已经揭示了极其丰富的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclic Segal Spaces Unbiased multicategory theory Multivariate functorial difference A Fibrational Theory of First Order Differential Structures A local-global principle for parametrized $\infty$-categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1