Francesco Periti, Sergio Picascia, Stefano Montanelli, Alfio Ferrara, Nina Tahmasebi
{"title":"Studying word meaning evolution through incremental semantic shift detection","authors":"Francesco Periti, Sergio Picascia, Stefano Montanelli, Alfio Ferrara, Nina Tahmasebi","doi":"10.1007/s10579-024-09769-1","DOIUrl":null,"url":null,"abstract":"<p>The study of <i>semantic shift</i>, that is, of how words change meaning as a consequence of social practices, events and political circumstances, is relevant in Natural Language Processing, Linguistics, and Social Sciences. The increasing availability of large diachronic corpora and advance in computational semantics have accelerated the development of computational approaches to detecting such shift. In this paper, we introduce a novel approach to tracing the evolution of word meaning over time. Our analysis focuses on gradual changes in word semantics and relies on an incremental approach to semantic shift detection (SSD) called <i>What is Done is Done</i> (WiDiD). WiDiD leverages scalable and evolutionary clustering of contextualised word embeddings to detect semantic shift and capture temporal <i>transactions</i> in word meanings. Existing approaches to SSD: (a) significantly simplify the semantic shift problem to cover change between two (or a few) time points, and (b) consider the existing corpora as static. We instead treat SSD as an organic process in which word meanings evolve across tens or even hundreds of time periods as the corpus is progressively made available. This results in an extremely demanding task that entails a multitude of intricate decisions. We demonstrate the applicability of this incremental approach on a diachronic corpus of Italian parliamentary speeches spanning eighteen distinct time periods. We also evaluate its performance on seven popular labelled benchmarks for SSD across multiple languages. Empirical results show that our results are comparable to state-of-the-art approaches, while outperforming the state-of-the-art for certain languages.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"26 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-024-09769-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of semantic shift, that is, of how words change meaning as a consequence of social practices, events and political circumstances, is relevant in Natural Language Processing, Linguistics, and Social Sciences. The increasing availability of large diachronic corpora and advance in computational semantics have accelerated the development of computational approaches to detecting such shift. In this paper, we introduce a novel approach to tracing the evolution of word meaning over time. Our analysis focuses on gradual changes in word semantics and relies on an incremental approach to semantic shift detection (SSD) called What is Done is Done (WiDiD). WiDiD leverages scalable and evolutionary clustering of contextualised word embeddings to detect semantic shift and capture temporal transactions in word meanings. Existing approaches to SSD: (a) significantly simplify the semantic shift problem to cover change between two (or a few) time points, and (b) consider the existing corpora as static. We instead treat SSD as an organic process in which word meanings evolve across tens or even hundreds of time periods as the corpus is progressively made available. This results in an extremely demanding task that entails a multitude of intricate decisions. We demonstrate the applicability of this incremental approach on a diachronic corpus of Italian parliamentary speeches spanning eighteen distinct time periods. We also evaluate its performance on seven popular labelled benchmarks for SSD across multiple languages. Empirical results show that our results are comparable to state-of-the-art approaches, while outperforming the state-of-the-art for certain languages.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.