{"title":"An inexact regularized proximal Newton method without line search","authors":"Simeon vom Dahl, Christian Kanzow","doi":"10.1007/s10589-024-00600-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function <i>f</i> and a convex (possibly non-smooth and extended-valued) function <span>\\(\\varphi \\)</span>. Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for <span>\\( \\nabla f \\)</span>, which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"29 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00600-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function f and a convex (possibly non-smooth and extended-valued) function \(\varphi \). Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for \( \nabla f \), which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.