Taeheon Kwak, Hyeonjin Yang, Junwoo Chung, Minjae Kim, Seongmin Jung, Gisu Park, Felix Sunjoo Kim
{"title":"Polymer-induced surface wrinkling and imine polymer-based doping of sol–gel zinc oxide in electrolyte-gated transistors","authors":"Taeheon Kwak, Hyeonjin Yang, Junwoo Chung, Minjae Kim, Seongmin Jung, Gisu Park, Felix Sunjoo Kim","doi":"10.1007/s13233-024-00315-0","DOIUrl":null,"url":null,"abstract":"<p>We report that thin-film morphology of sol–gel zinc oxide (ZnO) and their n-doping characteristics can be controlled using polymers, enabling high-performance n-type electrolyte-gated transistors (EGTs). The wrinkled surface of ZnO films was induced by dissolving an insulating polymer, for example, poly(4-vinyl phenol) (PVPh) and poly(2-hydroxyethyl methacrylate) (PHEMA), into the ZnO precursor solutions, followed by drying at 210 °C. The roughness peaked when the polymer composition was 2.5 wt%. The wavelength (λ) of the wrinkling structure was varied depending on the added polymer (0.49 μm for PVPh and 0.74 μm for PHEMA). For n-doping of the ZnO films, polyethylenimine (PEI) was deposited on the composite films, followed by high-temperature annealing at 500 °C. The constituent polymers (PVPh/PHEMA and PEI) were found decomposed after the heat treatment. The resulting n-doped ZnO films showed excellent electrical characteristics when used as a channel layer in EGTs based on a solid-state ion-gel. The device has a high electron mobility of 63.7 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> when ZnO channel was made with 1.0% of PVPh in the precursor.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Thin films of sol–gel precursors of ZnO mixed with an insulating polymer form wrinkled surface during drying and become more susceptible to n-doping from a nitrogen-rich polymer by thermal annealing, enabling the mobility enhancement of ZnO in electrolyte-gated transistors.</p>\n","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"63 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13233-024-00315-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We report that thin-film morphology of sol–gel zinc oxide (ZnO) and their n-doping characteristics can be controlled using polymers, enabling high-performance n-type electrolyte-gated transistors (EGTs). The wrinkled surface of ZnO films was induced by dissolving an insulating polymer, for example, poly(4-vinyl phenol) (PVPh) and poly(2-hydroxyethyl methacrylate) (PHEMA), into the ZnO precursor solutions, followed by drying at 210 °C. The roughness peaked when the polymer composition was 2.5 wt%. The wavelength (λ) of the wrinkling structure was varied depending on the added polymer (0.49 μm for PVPh and 0.74 μm for PHEMA). For n-doping of the ZnO films, polyethylenimine (PEI) was deposited on the composite films, followed by high-temperature annealing at 500 °C. The constituent polymers (PVPh/PHEMA and PEI) were found decomposed after the heat treatment. The resulting n-doped ZnO films showed excellent electrical characteristics when used as a channel layer in EGTs based on a solid-state ion-gel. The device has a high electron mobility of 63.7 cm2 V−1 s−1 when ZnO channel was made with 1.0% of PVPh in the precursor.
Graphical abstract
Thin films of sol–gel precursors of ZnO mixed with an insulating polymer form wrinkled surface during drying and become more susceptible to n-doping from a nitrogen-rich polymer by thermal annealing, enabling the mobility enhancement of ZnO in electrolyte-gated transistors.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.