Nonlinear absorption properties in gold nanoparticles for passively Q-switched laser and optical limiting applications

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-09-09 DOI:10.1007/s11051-024-06129-6
Junjie Yuan, Guowei Liu, Chuanrui Zhao, Zhengping Wang, Houwen Yang, Wenyong Cheng
{"title":"Nonlinear absorption properties in gold nanoparticles for passively Q-switched laser and optical limiting applications","authors":"Junjie Yuan,&nbsp;Guowei Liu,&nbsp;Chuanrui Zhao,&nbsp;Zhengping Wang,&nbsp;Houwen Yang,&nbsp;Wenyong Cheng","doi":"10.1007/s11051-024-06129-6","DOIUrl":null,"url":null,"abstract":"<div><p>Regarded as an essential transition metal, gold holds significant research value in the academic realm. In this work, gold nanoparticles were prepared by a combination of magnetron sputtering and liquid-phase exfoliation. The nonlinear optical properties of gold nanoparticles had been systematically investigated by utilizing the open aperture Z-scan method with both nanosecond and picosecond laser sources, which were rarely involved in previous studies. Based on the saturation absorption properties of gold nanoparticles, we prepared a gold saturable absorber and successfully applied it in generating passively Q-switched pulses in Pr:YLF crystal laser and Nd:YAG crystal laser, respectively. And we also analyzed its optical limiting applications. Our systematic study confirms that gold nanoparticles are suitable as candidates for saturable absorbers and optical limiting materials.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06129-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regarded as an essential transition metal, gold holds significant research value in the academic realm. In this work, gold nanoparticles were prepared by a combination of magnetron sputtering and liquid-phase exfoliation. The nonlinear optical properties of gold nanoparticles had been systematically investigated by utilizing the open aperture Z-scan method with both nanosecond and picosecond laser sources, which were rarely involved in previous studies. Based on the saturation absorption properties of gold nanoparticles, we prepared a gold saturable absorber and successfully applied it in generating passively Q-switched pulses in Pr:YLF crystal laser and Nd:YAG crystal laser, respectively. And we also analyzed its optical limiting applications. Our systematic study confirms that gold nanoparticles are suitable as candidates for saturable absorbers and optical limiting materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无源 Q 开关激光器和光限制应用的金纳米粒子的非线性吸收特性
金是一种重要的过渡金属,在学术领域具有重要的研究价值。本研究采用磁控溅射和液相剥离相结合的方法制备了金纳米粒子。通过使用纳秒和皮秒激光源的开孔 Z 扫描方法,系统地研究了金纳米粒子的非线性光学特性。基于金纳米粒子的饱和吸收特性,我们制备了金可饱和吸收体,并成功地将其分别应用于 Pr:YLF 晶体激光器和 Nd:YAG 晶体激光器中产生被动 Q 开关脉冲。我们还分析了其光学限制应用。我们的系统研究证实,金纳米粒子适合作为可饱和吸收体和光学限幅材料的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
Computational insights into metals (Ni, Pt, Pd) decorated Si-doped graphene/boron nitride hybrids for enhanced carbaryl gas (C12H11NO2) adsorption Controlled nanorod-like structure of iron tetrapolyvanadate for enhanced heterogeneous Fenton-like catalysis Cholic acid-mediated targeting of mRNA-LNPs improve the mRNA delivery to Caco-2 cells An ingenious strategy for construction of B, N Co-doped nanoporous carbon toward room-temperature adsorption and activation of formaldehyde Optimizing nanosilver for implant success: from marketing hype to medical reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1