Deng Hu, Tao Huaizhi, Ai Jiawei, Chen Jindong, Lesly Dasilva Wandji Djouonkep
{"title":"Synthesis and performance evaluation of thermo-thickening/Nano-SiO2 as a viscosifier for bentonite-free water-based drilling fluids","authors":"Deng Hu, Tao Huaizhi, Ai Jiawei, Chen Jindong, Lesly Dasilva Wandji Djouonkep","doi":"10.1007/s11051-024-06102-3","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, conventional viscosifiers exhibit limited effectiveness under deep formations due to their poor salt tolerance and low thermal resistance. To address the limitations, a thermo-responsive macromonomer (DAM) consisting of N,N-diethylacrylamide and N,N'-methylenebisacrylamide was copolymerized with 2-acrylamido-2-methylpropane sulfonate and chemically modified nano-silica (N-np) to obtain an effective thermo-thickening/Nano-SiO<sub>2</sub> polymer composite (N-DPAM) via in-situ polymerization under optimal conditions. The molecular structure of N-DPAM was analyzed by FTIR and <sup>1</sup>H NMR, while rheological and rheometric responses under high temperature, salt dosages, and shear resistance were investigated. The rheometric results demonstrated that DPAM exhibits a viscosity increase of 235% from 65 to 160 °C, but rapidly decreased at 180 °C, whereas N-DPAM displayed stabilized thickening responses of 218% above 160 °C due to intercalation and self-assembly of N-np within the polymer matrix as temperature increases. The viscosity retention rate (VRR) at a high shear rate of 1021 s<sup>−1</sup> and 200 °C indicated that the solution viscosity of N-DPAM was observed at 55 mPa s, which is 13 times higher compared to DPAM solution at 4 mPa s. From the rheological results, the VRR of N-DPAM fluid observed at 68% was slightly lower than that of HE300 at 73%, a commercially available viscosity additive in a salt-free environment at 200 °C, but three times higher (63%) than HE300 (25%) in the salt-saturated environment (20% NaCl). Additionally, a study of N-DPAM fluid contaminated by shaly soil from Dagang Oilfield demonstrated excellent compatibility with a filtration control agent to control the viscosity and filtration volumes (< 10 mL) at 200 °C.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06102-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, conventional viscosifiers exhibit limited effectiveness under deep formations due to their poor salt tolerance and low thermal resistance. To address the limitations, a thermo-responsive macromonomer (DAM) consisting of N,N-diethylacrylamide and N,N'-methylenebisacrylamide was copolymerized with 2-acrylamido-2-methylpropane sulfonate and chemically modified nano-silica (N-np) to obtain an effective thermo-thickening/Nano-SiO2 polymer composite (N-DPAM) via in-situ polymerization under optimal conditions. The molecular structure of N-DPAM was analyzed by FTIR and 1H NMR, while rheological and rheometric responses under high temperature, salt dosages, and shear resistance were investigated. The rheometric results demonstrated that DPAM exhibits a viscosity increase of 235% from 65 to 160 °C, but rapidly decreased at 180 °C, whereas N-DPAM displayed stabilized thickening responses of 218% above 160 °C due to intercalation and self-assembly of N-np within the polymer matrix as temperature increases. The viscosity retention rate (VRR) at a high shear rate of 1021 s−1 and 200 °C indicated that the solution viscosity of N-DPAM was observed at 55 mPa s, which is 13 times higher compared to DPAM solution at 4 mPa s. From the rheological results, the VRR of N-DPAM fluid observed at 68% was slightly lower than that of HE300 at 73%, a commercially available viscosity additive in a salt-free environment at 200 °C, but three times higher (63%) than HE300 (25%) in the salt-saturated environment (20% NaCl). Additionally, a study of N-DPAM fluid contaminated by shaly soil from Dagang Oilfield demonstrated excellent compatibility with a filtration control agent to control the viscosity and filtration volumes (< 10 mL) at 200 °C.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.