Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology

IF 2.7 Q3 ENGINEERING, BIOMEDICAL IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2024-09-06 DOI:10.1109/OJEMB.2024.3455011
Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson
{"title":"Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology","authors":"Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson","doi":"10.1109/OJEMB.2024.3455011","DOIUrl":null,"url":null,"abstract":"In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669194/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化的全切片图像 H&e 染色归一化:迈向数字病理学大数据整合的一步
在医疗诊断领域,病理学和组织学是精确鉴定疾病的关键。通过自动化增强的数字组织病理学有助于高效分析每天产生的大量活检图像,从而简化评估流程。本研究的重点是在全切片图像(WSI)群组中进行染色颜色归一化(SCN),旨在减少批次偏差。在已发表的图形方法基础上,本研究展示了一种数学群体或数据驱动方法,可优化对参考 WSI 数量和相应总和的依赖性,从而提高 SCN 流程的效率。该方法通过使用染色向量欧氏距离分析,将色彩收敛分析的速度提高了 50 倍,对参考 WSI 的要求降低了一半以上。该方法通过以下三方面的方法进行验证:1)染色矢量欧氏距离分析;2)距离计算计时;3)对癌症肿瘤相关区域的 SCN 进行定性和定量评估。结果验证了数据驱动 SCN 方法的性能,从而有望提高计算病理分析的精确度和可靠性。这一进步有望改善诊断过程、治疗策略和患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
期刊最新文献
Corrections to “Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis” IEEE Open Journal of Engineering in Medicine and Biology Editorial Board Information IEEE Open Journal of Engineering in Medicine and Biology Author Instructions Guest Editorial: Introduction to the Special Series on Advances in Cardiovascular and Respiratory Systems Engineering Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1