Acrylate polymeric nanocomposites embedded with transition metal triazole complexes: synthesis, characterization, and prospective implement as hydrogen peroxide sensors
Rokaya A. Sobh, Hend S. Magar, Hayam A. Abd El Salam, Hanaa E. Nasr
{"title":"Acrylate polymeric nanocomposites embedded with transition metal triazole complexes: synthesis, characterization, and prospective implement as hydrogen peroxide sensors","authors":"Rokaya A. Sobh, Hend S. Magar, Hayam A. Abd El Salam, Hanaa E. Nasr","doi":"10.1007/s11051-024-06075-3","DOIUrl":null,"url":null,"abstract":"<div><p>Novel active polymeric nanocomposites based on triazole complexes with some transition metals, Ni (II), Fe (III), and Cu(II), were synthesized through in situ microemulsion polymerization of methyl methacrylate and hydroxypropyl methacrylate as biocompatible polymeric nanospheres. TEM images demonstrated that the nanocomposites have been successfully formed into nanosphere shapes. While TEM and FTIR reaffirmed the formed structure, TGA supported the thermal stability of the produced nanocomposite. Herein, characterization and a sensitive electrochemical sensor were constructed for the evaluation of peroxide oxidation detection using the prepared polymeric nanocomposites with the triazole complexes. The differently prepared nanocomposite-modified screen-printed electrode showed high sensitivity toward hydrogen peroxide detection with a linear range of 1–1000 µM and a lower detection limit of 0.015 µM, which can be applied in the enzymatic biosensor field. Finally, polymeric nanocomposites based on triazole complexes have good electrochemical properties, which can be attributed to this compound possessing two electrochemical active components and/or the nanosphere structure of the particles that can further improve the electrochemistry through the possible oxidation states and the synergistic effect.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06075-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel active polymeric nanocomposites based on triazole complexes with some transition metals, Ni (II), Fe (III), and Cu(II), were synthesized through in situ microemulsion polymerization of methyl methacrylate and hydroxypropyl methacrylate as biocompatible polymeric nanospheres. TEM images demonstrated that the nanocomposites have been successfully formed into nanosphere shapes. While TEM and FTIR reaffirmed the formed structure, TGA supported the thermal stability of the produced nanocomposite. Herein, characterization and a sensitive electrochemical sensor were constructed for the evaluation of peroxide oxidation detection using the prepared polymeric nanocomposites with the triazole complexes. The differently prepared nanocomposite-modified screen-printed electrode showed high sensitivity toward hydrogen peroxide detection with a linear range of 1–1000 µM and a lower detection limit of 0.015 µM, which can be applied in the enzymatic biosensor field. Finally, polymeric nanocomposites based on triazole complexes have good electrochemical properties, which can be attributed to this compound possessing two electrochemical active components and/or the nanosphere structure of the particles that can further improve the electrochemistry through the possible oxidation states and the synergistic effect.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.