{"title":"A computational analysis of the impact of thin undoped channels in surface-related current collapse of AlGaN/GaN HEMTs","authors":"Christos Zervos, Petros Beleniotis, Matthias Rudolph","doi":"10.1088/1361-6641/ad689c","DOIUrl":null,"url":null,"abstract":"This study provides an insight into the impact of thin purely undoped GaN channel thickness (<italic toggle=\"yes\">t</italic><sub>ch</sub>) on surface-related trapping effects in AlGaN/GaN high electron mobility transistors. Our TCAD study suggests that in cases where parasitic gate leakage is the driving trapping mechanism that promotes the injection of electrons from the Schottky gate contact into surface states, this effect can be alleviated by reducing <italic toggle=\"yes\">t</italic><sub>ch</sub> of the undoped GaN channel. We show that by decreasing <italic toggle=\"yes\">t</italic><sub>ch</sub> from 130 to 10 nm, devices exhibit a reduction in gate-related current collapse under the specific class-B RF operating bias conditions as a consequence of a substantial decrease in the off-state gate leakage with reducing <italic toggle=\"yes\">t</italic><sub>ch</sub>. Large-signal simulations revealed an increase by 3 W mm<sup>−1</sup> and about 12% output power and power-added efficiency due to the decrease of gate-related collapse. This work, for the first time, highlights the role of a proper purely undoped GaN <italic toggle=\"yes\">t</italic><sub>ch</sub> selection to alleviate gate-related surface trapping in the design of GaN-based microwave power amplifiers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad689c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides an insight into the impact of thin purely undoped GaN channel thickness (tch) on surface-related trapping effects in AlGaN/GaN high electron mobility transistors. Our TCAD study suggests that in cases where parasitic gate leakage is the driving trapping mechanism that promotes the injection of electrons from the Schottky gate contact into surface states, this effect can be alleviated by reducing tch of the undoped GaN channel. We show that by decreasing tch from 130 to 10 nm, devices exhibit a reduction in gate-related current collapse under the specific class-B RF operating bias conditions as a consequence of a substantial decrease in the off-state gate leakage with reducing tch. Large-signal simulations revealed an increase by 3 W mm−1 and about 12% output power and power-added efficiency due to the decrease of gate-related collapse. This work, for the first time, highlights the role of a proper purely undoped GaN tch selection to alleviate gate-related surface trapping in the design of GaN-based microwave power amplifiers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.