Thermoelectric supercapacitors: materials, challenges and future outlook

Sonali Verma, Bhavya Padha, Aamir Ahmed, Rakesh Singh, Deepak P Dubal, Sandeep Arya
{"title":"Thermoelectric supercapacitors: materials, challenges and future outlook","authors":"Sonali Verma, Bhavya Padha, Aamir Ahmed, Rakesh Singh, Deepak P Dubal, Sandeep Arya","doi":"10.1088/2516-1083/ad6be3","DOIUrl":null,"url":null,"abstract":"Self-powered devices are the most interesting research subject in recent times, focusing on the advancement of the flexible and wearable electronics market. A variety of self-powered systems have been designed using different energy harvesting (solar cells, mechanical as well as thermal energy harvester) and storage devices such as supercapacitors. Environmental degradation, the inadequacy in the supply of existing fossil fuels, as well as fast-rising energy demand have all raised alarm bells for our planet’s long-term viability. To address these challenges, researchers must pursue steadfast studies on urgent needs by using ‘green’ energies such as wind, solar, tidal, mechanical, as well as geothermal sources. Because these green energy resources are intermittent, new energy harvesting as well as storage devices must be designed to keep and distribute the captured energy gradually, efficiently and meticulously. The low-grade thermal energy generally squandered without usage can be particularly beneficial for consistently powering electronic equipment, including sensors and wearable electronics. This review deals with a detailed discussion of the mechanism and fabrication of thermoelectric supercapacitors. The challenges, possible solutions, and the prospects of thermoelectric supercapacitors have also been highlighted.","PeriodicalId":501831,"journal":{"name":"Progress in Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1083/ad6be3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-powered devices are the most interesting research subject in recent times, focusing on the advancement of the flexible and wearable electronics market. A variety of self-powered systems have been designed using different energy harvesting (solar cells, mechanical as well as thermal energy harvester) and storage devices such as supercapacitors. Environmental degradation, the inadequacy in the supply of existing fossil fuels, as well as fast-rising energy demand have all raised alarm bells for our planet’s long-term viability. To address these challenges, researchers must pursue steadfast studies on urgent needs by using ‘green’ energies such as wind, solar, tidal, mechanical, as well as geothermal sources. Because these green energy resources are intermittent, new energy harvesting as well as storage devices must be designed to keep and distribute the captured energy gradually, efficiently and meticulously. The low-grade thermal energy generally squandered without usage can be particularly beneficial for consistently powering electronic equipment, including sensors and wearable electronics. This review deals with a detailed discussion of the mechanism and fabrication of thermoelectric supercapacitors. The challenges, possible solutions, and the prospects of thermoelectric supercapacitors have also been highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热电超级电容器:材料、挑战和未来展望
自供电设备是近期最有趣的研究课题,其重点在于推动柔性和可穿戴电子产品市场的发展。人们利用不同的能量收集(太阳能电池、机械能和热能收集器)和存储设备(如超级电容器)设计出了各种自供电系统。环境退化、现有化石燃料供应不足以及快速增长的能源需求都为地球的长期生存敲响了警钟。为了应对这些挑战,研究人员必须利用风能、太阳能、潮汐能、机械能和地热能等 "绿色 "能源,坚持不懈地开展急需研究。由于这些绿色能源是间歇性的,因此必须设计新的能源采集和存储设备,以便逐步、高效、细致地保存和分配所采集的能源。通常被浪费掉的低品位热能可持续为包括传感器和可穿戴电子设备在内的电子设备供电,这一点尤其有益。本综述详细讨论了热电超级电容器的机理和制造。此外,还强调了热电超级电容器面临的挑战、可能的解决方案和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.20
自引率
0.00%
发文量
0
期刊最新文献
Public control of coal resources of the United States’ Powder River Basin for a managed decarbonization transition A review on machine learning-guided design of energy materials Investigating state-of-the-art planning strategies for electric vehicle charging infrastructures in coupled transport and power networks: a comprehensive review A research agenda to support economic resilience in US oil and gas producing communities Productive use of electricity in agriculture in sub-Saharan Africa: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1