{"title":"Sustainable construction: the use of cork material in the building industry","authors":"Madhura Yadav, Ishika Singhal","doi":"10.1007/s40243-024-00270-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the ongoing quest for sustainable construction practices, the exploration of innovative materials is paramount, and cork has emerged as a remarkable eco-friendly building material with vast untapped potential. Cork, harvested from the bark of cork oak trees without harming them, possesses a unique combination of qualities that make it an ideal candidate for environmentally conscious construction. Cork is exceptionally renewable and biodegradable. What makes cork even more promising is its compatibility with various existing construction materials, including cement, plastic, and plywood. By integrating cork with these materials, we can improve their structural integrity, thermal performance, and acoustic insulation, while reducing their environmental impact. By harnessing the potential of cork and seamlessly merging its exceptional performance with a planet-conscious approach, the construction industry can significantly reduce its ecological footprint. Cork emerges as a compelling contender in shaping a greener, more resilient construction landscape, offering a sustainable alternative that aligns with our growing commitment to environmentally responsible building practices. This eco-friendly material not only benefits the environment but also enhances the overall quality and sustainability of our built environment.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00270-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00270-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the ongoing quest for sustainable construction practices, the exploration of innovative materials is paramount, and cork has emerged as a remarkable eco-friendly building material with vast untapped potential. Cork, harvested from the bark of cork oak trees without harming them, possesses a unique combination of qualities that make it an ideal candidate for environmentally conscious construction. Cork is exceptionally renewable and biodegradable. What makes cork even more promising is its compatibility with various existing construction materials, including cement, plastic, and plywood. By integrating cork with these materials, we can improve their structural integrity, thermal performance, and acoustic insulation, while reducing their environmental impact. By harnessing the potential of cork and seamlessly merging its exceptional performance with a planet-conscious approach, the construction industry can significantly reduce its ecological footprint. Cork emerges as a compelling contender in shaping a greener, more resilient construction landscape, offering a sustainable alternative that aligns with our growing commitment to environmentally responsible building practices. This eco-friendly material not only benefits the environment but also enhances the overall quality and sustainability of our built environment.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies