Characterizing the nonmonotonic behavior of mutual information along biochemical reaction cascades

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-09-10 DOI:10.1103/physreve.110.034309
Raymond Fan, Andreas Hilfinger
{"title":"Characterizing the nonmonotonic behavior of mutual information along biochemical reaction cascades","authors":"Raymond Fan, Andreas Hilfinger","doi":"10.1103/physreve.110.034309","DOIUrl":null,"url":null,"abstract":"Cells sense environmental signals and transmit information intracellularly through changes in the abundance of molecular components. Such molecular abundances can be measured in single cells and exhibit significant heterogeneity in clonal populations even in identical environments. Experimentally observed joint probability distributions can then be used to quantify the covariability and mutual information between molecular abundances along signaling cascades. However, because stationary state abundances along stochastic biochemical reaction cascades are not conditionally independent, their mutual information is not constrained by the data-processing inequality. Here, we report the conditions under which the mutual information between stationary state abundances increases along a cascade of biochemical reactions. This nonmonotonic behavior can be intuitively understood in terms of noise propagation and time-averaging stochastic fluctuations that are short-lived compared to an extrinsic signal. Our results reemphasize that mutual information measurements of stationary state distributions of cellular components may be of limited utility for characterizing cellular signaling processes because they do not measure information transfer.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034309","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Cells sense environmental signals and transmit information intracellularly through changes in the abundance of molecular components. Such molecular abundances can be measured in single cells and exhibit significant heterogeneity in clonal populations even in identical environments. Experimentally observed joint probability distributions can then be used to quantify the covariability and mutual information between molecular abundances along signaling cascades. However, because stationary state abundances along stochastic biochemical reaction cascades are not conditionally independent, their mutual information is not constrained by the data-processing inequality. Here, we report the conditions under which the mutual information between stationary state abundances increases along a cascade of biochemical reactions. This nonmonotonic behavior can be intuitively understood in terms of noise propagation and time-averaging stochastic fluctuations that are short-lived compared to an extrinsic signal. Our results reemphasize that mutual information measurements of stationary state distributions of cellular components may be of limited utility for characterizing cellular signaling processes because they do not measure information transfer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表征生化反应级联中互信息的非单调行为
细胞通过分子成分丰度的变化来感知环境信号并在细胞内传递信息。这种分子丰度可以在单细胞中测量,即使在相同的环境中,在克隆群体中也会表现出显著的异质性。实验观察到的联合概率分布可用于量化信号级联分子丰度之间的共变性和互信息。然而,由于随机生化反应级联的静止态丰度不是条件独立的,它们的互信息不受数据处理不等式的限制。在这里,我们报告了在什么条件下,生化反应级联上的静止态丰度之间的互信息会增加。这种非单调行为可以直观地从噪声传播和时间平均随机波动的角度来理解,与外在信号相比,随机波动的持续时间很短。我们的研究结果再次强调,细胞成分静止状态分布的互信息测量对于描述细胞信号传导过程可能作用有限,因为它们不能测量信息传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1