ANN-based mathematical model for improving the accuracy of liquid flow measurements at nuclear power plants

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Atomic Energy Pub Date : 2024-08-14 DOI:10.1007/s10512-024-01109-4
A. M. Emelyanov, I. S. Nadezhdin, S. N. Liventsov
{"title":"ANN-based mathematical model for improving the accuracy of liquid flow measurements at nuclear power plants","authors":"A. M. Emelyanov,&nbsp;I. S. Nadezhdin,&nbsp;S. N. Liventsov","doi":"10.1007/s10512-024-01109-4","DOIUrl":null,"url":null,"abstract":"<div><p>A review of literature sources demonstrates the relevance of improving the accuracy of liquid flow measurements. To solve this problem, a neural-network model for liquid flow determination was developed and tested. The optimum structure and training parameters of an artificial neural network, such as the activation function, transfer function of the output layer, number of hidden layers and neurons in them, were selected. The training sample was generated using empirical expressions of GOST 8.586.1–2005 (ISO 5167–1:2022). The developed neural-network predictive model, which provides an uncertainty of calculations no greater than 0.32%, is intended for use as part of a software and hardware system for improving the accuracy of liquid flow measurements at nuclear industry enterprises.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"135 5-6","pages":"250 - 255"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01109-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A review of literature sources demonstrates the relevance of improving the accuracy of liquid flow measurements. To solve this problem, a neural-network model for liquid flow determination was developed and tested. The optimum structure and training parameters of an artificial neural network, such as the activation function, transfer function of the output layer, number of hidden layers and neurons in them, were selected. The training sample was generated using empirical expressions of GOST 8.586.1–2005 (ISO 5167–1:2022). The developed neural-network predictive model, which provides an uncertainty of calculations no greater than 0.32%, is intended for use as part of a software and hardware system for improving the accuracy of liquid flow measurements at nuclear industry enterprises.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 ANN 的数学模型用于提高核电站液体流量测量的准确性
对文献资料的回顾表明,提高液体流量测量的准确性具有现实意义。为了解决这个问题,我们开发并测试了一种用于测定液体流量的神经网络模型。选择了人工神经网络的最佳结构和训练参数,如激活函数、输出层的传递函数、隐层数和其中的神经元。训练样本是根据 GOST 8.586.1-2005 (ISO 5167-1:2022)的经验表达式生成的。所开发的神经网络预测模型可提供不大于 0.32% 的计算不确定性,可作为软件和硬件系统的一部分,用于提高核工业企业液体流量测量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
期刊最新文献
Liquidus temperature study of LiF–NaF–KF-based melts simulating the fuel salt of a molten-salt reactor for Np, Am, Cm transmutation An analysis of machine learning for the safety justification of VVER reactors Development of a neural-network methodology for the safety justification of VVER reactors in manoeuvring modes Formation of intermetallics during the metallization of model nuclear fuel based on uranium dioxide containing oxides of rare earth metals and palladium Self-protection of fast lead-cooled reactors against the partial blockage of the core flow area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1