Development of a neural-network methodology for the safety justification of VVER reactors in manoeuvring modes

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Atomic Energy Pub Date : 2024-11-26 DOI:10.1007/s10512-024-01141-4
M. A. Uvakin, A. L. Nikolaev, M. V. Antipov, I. V. Makhin, E. V. Sotskov
{"title":"Development of a neural-network methodology for the safety justification of VVER reactors in manoeuvring modes","authors":"M. A. Uvakin,&nbsp;A. L. Nikolaev,&nbsp;M. V. Antipov,&nbsp;I. V. Makhin,&nbsp;E. V. Sotskov","doi":"10.1007/s10512-024-01141-4","DOIUrl":null,"url":null,"abstract":"<div><p>The article considers the advancement of a methodology developed by JSC OKB “Gidropress” for the calculation safety justification of VVER reactors in manoeuvring modes. The main challenge of the methodology in terms of the accident analysis is the selection and justification of initial conditions, which are carried out through expert assessment. To solve the problem, it is proposed to use machine learning for automating expert assessments based on available calculation results. The article proposes methods for constructing elements of a neural network and an algorithm for its learning. The results of the work of these elements and their combinations for the solution to the given problem are analyzed. Conclusions are made about the possibility of advancing the methodology through the development and implementation of a multilayer neural network that takes into account the accident type, manoeuvring algorithm, moment of the campaign, specifics of a particular project, and other factors important for the safety justification.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"136 3-4","pages":"127 - 132"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01141-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers the advancement of a methodology developed by JSC OKB “Gidropress” for the calculation safety justification of VVER reactors in manoeuvring modes. The main challenge of the methodology in terms of the accident analysis is the selection and justification of initial conditions, which are carried out through expert assessment. To solve the problem, it is proposed to use machine learning for automating expert assessments based on available calculation results. The article proposes methods for constructing elements of a neural network and an algorithm for its learning. The results of the work of these elements and their combinations for the solution to the given problem are analyzed. Conclusions are made about the possibility of advancing the methodology through the development and implementation of a multilayer neural network that takes into account the accident type, manoeuvring algorithm, moment of the campaign, specifics of a particular project, and other factors important for the safety justification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在机动模式下VVER反应堆安全论证的神经网络方法的发展
本文考虑了JSC OKB“Gidropress”开发的一种方法的进步,用于计算VVER反应堆在机动模式下的安全性。该方法在事故分析方面的主要挑战是初始条件的选择和证明,这是通过专家评估进行的。为了解决这个问题,提出了利用机器学习来基于可用的计算结果自动进行专家评估。本文提出了神经网络元素的构造方法及其学习算法。分析了这些元素及其组合的工作结果,以解决给定的问题。通过多层神经网络的开发和实施,考虑到事故类型、机动算法、活动时刻、特定项目的细节以及其他对安全论证重要的因素,得出了关于推进方法的可能性的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
期刊最新文献
Liquidus temperature study of LiF–NaF–KF-based melts simulating the fuel salt of a molten-salt reactor for Np, Am, Cm transmutation An analysis of machine learning for the safety justification of VVER reactors Development of a neural-network methodology for the safety justification of VVER reactors in manoeuvring modes Formation of intermetallics during the metallization of model nuclear fuel based on uranium dioxide containing oxides of rare earth metals and palladium Self-protection of fast lead-cooled reactors against the partial blockage of the core flow area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1