Jifang Zhang, Jinde Sun, Chengcheng Suo, Wei Li, Sha Luo, Bing Tian, Chunhui Ma and Shouxin Liu
{"title":"Sulfur vacancy induced radical generation in ZnIn2S4 for lignin photocatalytic Cα–Cβ cleavage†","authors":"Jifang Zhang, Jinde Sun, Chengcheng Suo, Wei Li, Sha Luo, Bing Tian, Chunhui Ma and Shouxin Liu","doi":"10.1039/D4SE00741G","DOIUrl":null,"url":null,"abstract":"<p >The low efficiency of photogenerated charge transfer to generate reactive oxygen species is the main factor that limits the photocatalytic activity of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS)-based materials in lignin depolymerization. In this work, we prepared an efficient ZIS catalyst with a hexagonal crystal structure and three-dimensional flower-like micromorphology by a solvothermal method. The ZIS catalyst possessed abundant active sites and efficient light-harvesting ability. Sulfur vacancies (Sv) were introduced into the ZIS photocatalyst (ZIS-Sv) to enhance its electron-withdrawing ability and promote the separation and transfer of photogenerated charges. Using the ZIS-Sv photocatalyst, the conversion rate of C<small><sub>α</sub></small>–C<small><sub>β</sub></small> bonds in the β-O-4 dimer reached 96.31% and the molar yields (selectivity) of phenol and acetophenone were 695.17 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> (85.14%) and 610.66 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> (74.73%), respectively (with a ZIS-Sv<small><sub>0.6</sub></small> concentration of 1 mg ml<small><sup>−1</sup></small>, irradiation time of 6 h, ethanol content of 90%, pH of 5, and 2-phenoxyacetophenone concentration of 1 mg ml<small><sup>−1</sup></small>). The photocatalytic depolymerization of dioxane lignin by the ZIS-Sv photocatalyst reached an efficiency of 80.42%. Catalyst characterization results and mechanism studies indicated that Sv promoted effective electron adsorption to generate oxygen radicals ˙OH and ˙O<small><sub>2</sub></small><small><sup>−</sup></small> through O<small><sub>2</sub></small> single-electron reduction and H<small><sub>2</sub></small>O decomposition, respectively. Then, the oxygen radicals combined with C-centered radicals to form unstable intermediates, further breaking lignin linkages, which finally formed an efficient indirect oxidation process. It is expected that introducing Sv into ZIS materials is a useful strategy to obtain photocatalysts for C<small><sub>α</sub></small>–C<small><sub>β</sub></small> cleavage to realize efficient photocatalytic lignin depolymerization.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 4496-4506"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00741g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The low efficiency of photogenerated charge transfer to generate reactive oxygen species is the main factor that limits the photocatalytic activity of ZnIn2S4 (ZIS)-based materials in lignin depolymerization. In this work, we prepared an efficient ZIS catalyst with a hexagonal crystal structure and three-dimensional flower-like micromorphology by a solvothermal method. The ZIS catalyst possessed abundant active sites and efficient light-harvesting ability. Sulfur vacancies (Sv) were introduced into the ZIS photocatalyst (ZIS-Sv) to enhance its electron-withdrawing ability and promote the separation and transfer of photogenerated charges. Using the ZIS-Sv photocatalyst, the conversion rate of Cα–Cβ bonds in the β-O-4 dimer reached 96.31% and the molar yields (selectivity) of phenol and acetophenone were 695.17 μmol g−1 h−1 (85.14%) and 610.66 μmol g−1 h−1 (74.73%), respectively (with a ZIS-Sv0.6 concentration of 1 mg ml−1, irradiation time of 6 h, ethanol content of 90%, pH of 5, and 2-phenoxyacetophenone concentration of 1 mg ml−1). The photocatalytic depolymerization of dioxane lignin by the ZIS-Sv photocatalyst reached an efficiency of 80.42%. Catalyst characterization results and mechanism studies indicated that Sv promoted effective electron adsorption to generate oxygen radicals ˙OH and ˙O2− through O2 single-electron reduction and H2O decomposition, respectively. Then, the oxygen radicals combined with C-centered radicals to form unstable intermediates, further breaking lignin linkages, which finally formed an efficient indirect oxidation process. It is expected that introducing Sv into ZIS materials is a useful strategy to obtain photocatalysts for Cα–Cβ cleavage to realize efficient photocatalytic lignin depolymerization.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.