Behnam Farnad, Kambiz Majidzadeh, Mohammad Masdari, Amin Babazadeh Sangar
{"title":"A Method Based on Plants Light Absorption Spectrum and Its Use for Data Clustering","authors":"Behnam Farnad, Kambiz Majidzadeh, Mohammad Masdari, Amin Babazadeh Sangar","doi":"10.1007/s42235-024-00579-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nature-inspired optimization algorithms refer to techniques that simulate the behavior and ecosystem of living organisms or natural phenomena. One such technique is the “Photosynthesis Spectrum Algorithm,” which was developed by mimicking the process by which photons behave as a population in plants. This optimization technique has three stages that mimic the structure of leaves and the fluorescence phenomenon. Each stage updates the fitness of the solution by using a mathematical equation to direct the photon to the reaction center. Three stages of testing have been conducted to test the efficacy of this approach. In the first stage, functions from the CEC 2019 and CEC 2021 competitions are used to evaluate the performance and convergence of the proposed method. The statistical results from non-parametric Friedman and Kendall’s W tests show that the proposed method is superior to other methods in terms of obtaining the best average of solutions and achieving stability in finding solutions. In other sections, the experiment is designed for data clustering. The proposed method is compared with recent data clustering and classification metaheuristic algorithms, indicating that this method can achieve significant performance for clustering in less than 10 s of CPU time and with an accuracy of over 90%.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"3004 - 3040"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00579-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nature-inspired optimization algorithms refer to techniques that simulate the behavior and ecosystem of living organisms or natural phenomena. One such technique is the “Photosynthesis Spectrum Algorithm,” which was developed by mimicking the process by which photons behave as a population in plants. This optimization technique has three stages that mimic the structure of leaves and the fluorescence phenomenon. Each stage updates the fitness of the solution by using a mathematical equation to direct the photon to the reaction center. Three stages of testing have been conducted to test the efficacy of this approach. In the first stage, functions from the CEC 2019 and CEC 2021 competitions are used to evaluate the performance and convergence of the proposed method. The statistical results from non-parametric Friedman and Kendall’s W tests show that the proposed method is superior to other methods in terms of obtaining the best average of solutions and achieving stability in finding solutions. In other sections, the experiment is designed for data clustering. The proposed method is compared with recent data clustering and classification metaheuristic algorithms, indicating that this method can achieve significant performance for clustering in less than 10 s of CPU time and with an accuracy of over 90%.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.