An Opposition-Based Learning Adaptive Chaotic Particle Swarm Optimization Algorithm

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-09-04 DOI:10.1007/s42235-024-00578-4
Chongyang Jiao, Kunjie Yu, Qinglei Zhou
{"title":"An Opposition-Based Learning Adaptive Chaotic Particle Swarm Optimization Algorithm","authors":"Chongyang Jiao,&nbsp;Kunjie Yu,&nbsp;Qinglei Zhou","doi":"10.1007/s42235-024-00578-4","DOIUrl":null,"url":null,"abstract":"<div><p>To solve the shortcomings of Particle Swarm Optimization (PSO) algorithm, local optimization and slow convergence, an Opposition-based Learning Adaptive Chaotic PSO (LCPSO) algorithm was presented. The chaotic elite opposition-based learning process was applied to initialize the entire population, which enhanced the quality of the initial individuals and the population diversity, made the initial individuals distribute in the better quality areas, and accelerated the search efficiency of the algorithm. The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm, and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum. The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics, and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability, search accuracy and convergence speed. In addition, the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"3076 - 3097"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00578-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the shortcomings of Particle Swarm Optimization (PSO) algorithm, local optimization and slow convergence, an Opposition-based Learning Adaptive Chaotic PSO (LCPSO) algorithm was presented. The chaotic elite opposition-based learning process was applied to initialize the entire population, which enhanced the quality of the initial individuals and the population diversity, made the initial individuals distribute in the better quality areas, and accelerated the search efficiency of the algorithm. The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm, and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum. The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics, and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability, search accuracy and convergence speed. In addition, the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对立学习的自适应混沌粒子群优化算法
为了解决粒子群优化算法(PSO)存在的局部优化和收敛速度慢的缺点,提出了一种基于对立学习的自适应混沌PSO(LCPSO)算法。基于对立的混沌精英学习过程用于初始化整个种群,提高了初始个体的质量和种群的多样性,使初始个体分布在质量较好的区域,加快了算法的搜索效率。在进化过程中,根据过早收敛的程度自适应地定制惯性权重,以平衡算法的局部搜索能力和全局搜索能力,并引入反向搜索策略以增加算法逃离局部最优的机会。在 10 个不同特性的基准测试函数上,将 LCPSO 算法与其他智能算法进行了对比,仿真实验表明,所提出的算法在全局搜索能力、搜索精度和收敛速度上都优于其他智能算法。此外,工程设计问题的仿真结果也验证了所提算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models A Finite Element Human Body Model of Chinese Midsize Male for Pedestrian Safety Analysis Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy Exploring the Potential of ChatGPT for Finding Engineering Biomimetic Solutions: A Theoretical Framework and Practical Insights Piezoelectric Field Effect Transistors (Piezo-FETs) for Bionic MEMS Sensors: A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1