Extrusion/Inkjet Printing of Verteporfin-Loaded Bilayer Skin Substitutes for Wound Healing and Structure Reconstruction

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-09-04 DOI:10.1007/s42235-024-00585-5
Tian Jiao, Ruilu Zhou, Junrong Jiao, Junna Jiao, Qin Lian
{"title":"Extrusion/Inkjet Printing of Verteporfin-Loaded Bilayer Skin Substitutes for Wound Healing and Structure Reconstruction","authors":"Tian Jiao,&nbsp;Ruilu Zhou,&nbsp;Junrong Jiao,&nbsp;Junna Jiao,&nbsp;Qin Lian","doi":"10.1007/s42235-024-00585-5","DOIUrl":null,"url":null,"abstract":"<div><p>The shortage of transplantable skin is the leading cause of death in patients with extensive skin defect. Addressing this challenge urgently requires the development of skin substitutes capable of wound repair and facilitating skin regeneration. In this study, a biomimetic bilayer skin tissue model consisting of collagen, gelatin/sodium alginate, fibroblasts, human umbilical vein endothelial cells, keratinocytes, melanocytes, and verteporfin was devised. Then, the skin model was fabricated using precise extrusion/inkjet bioprinters, and it reconstruction capabilities were evaluated through skin defect repair experiments. The printed skin tissue reduced the inflammatory response of the wound by 38% and inhibited the expression of TGF-β and YAP, and promoted the transformation of macrophages from M1 phenotype to M2 phenotype, thus promoting the reasonable reconstruction of fibronectin and collagen on the wound, finally promoting the wound healing, and reducing the wound contraction and scar formation. In addition, the proliferation and differentiation of human umbilical vein endothelial cells, keratinocytes, and melanocytes in printed skin increased the number of regenerated blood vessels by 123%, while promoting the reconstruction of multilayer epidermal structure and skin color. The outcomes of this investigation present a promising skin model and therapeutic strategy for skin injury, offering a potential avenue for the reconstruction of skin structure and function.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2969 - 2984"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00585-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The shortage of transplantable skin is the leading cause of death in patients with extensive skin defect. Addressing this challenge urgently requires the development of skin substitutes capable of wound repair and facilitating skin regeneration. In this study, a biomimetic bilayer skin tissue model consisting of collagen, gelatin/sodium alginate, fibroblasts, human umbilical vein endothelial cells, keratinocytes, melanocytes, and verteporfin was devised. Then, the skin model was fabricated using precise extrusion/inkjet bioprinters, and it reconstruction capabilities were evaluated through skin defect repair experiments. The printed skin tissue reduced the inflammatory response of the wound by 38% and inhibited the expression of TGF-β and YAP, and promoted the transformation of macrophages from M1 phenotype to M2 phenotype, thus promoting the reasonable reconstruction of fibronectin and collagen on the wound, finally promoting the wound healing, and reducing the wound contraction and scar formation. In addition, the proliferation and differentiation of human umbilical vein endothelial cells, keratinocytes, and melanocytes in printed skin increased the number of regenerated blood vessels by 123%, while promoting the reconstruction of multilayer epidermal structure and skin color. The outcomes of this investigation present a promising skin model and therapeutic strategy for skin injury, offering a potential avenue for the reconstruction of skin structure and function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挤压/喷墨打印用于伤口愈合和结构重建的 Verteporfin 负载双层皮肤替代物
可移植皮肤的短缺是导致大面积皮肤缺损患者死亡的主要原因。要应对这一挑战,迫切需要开发能够修复伤口和促进皮肤再生的皮肤替代品。本研究设计了一种由胶原蛋白、明胶/海藻酸钠、成纤维细胞、人脐静脉内皮细胞、角质形成细胞、黑色素细胞和 verteporfin 组成的生物仿真双层皮肤组织模型。然后,使用精密挤压/喷墨生物打印机制作了皮肤模型,并通过皮肤缺损修复实验评估了其重建能力。打印出的皮肤组织使伤口的炎症反应降低了 38%,并抑制了 TGF-β 和 YAP 的表达,促进了巨噬细胞从 M1 表型向 M2 表型转化,从而促进了纤维连接蛋白和胶原蛋白在伤口上的合理重建,最终促进了伤口愈合,减少了伤口收缩和疤痕形成。此外,印模皮肤中的人脐静脉内皮细胞、角质细胞和黑色素细胞的增殖和分化使再生血管的数量增加了 123%,同时促进了多层表皮结构和皮肤颜色的重建。这项研究的成果为皮肤损伤提供了一种有前景的皮肤模型和治疗策略,为重建皮肤结构和功能提供了一条潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models A Finite Element Human Body Model of Chinese Midsize Male for Pedestrian Safety Analysis Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy Exploring the Potential of ChatGPT for Finding Engineering Biomimetic Solutions: A Theoretical Framework and Practical Insights Piezoelectric Field Effect Transistors (Piezo-FETs) for Bionic MEMS Sensors: A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1