Optimizing high-temperature geothermal extraction through THM coupling: insights from SC-CO2 enhanced modeling

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering Computations Pub Date : 2024-09-03 DOI:10.1108/ec-11-2023-0889
GuoLong Zhang
{"title":"Optimizing high-temperature geothermal extraction through THM coupling: insights from SC-CO2 enhanced modeling","authors":"GuoLong Zhang","doi":"10.1108/ec-11-2023-0889","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-11-2023-0889","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.

Design/methodology/approach

This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.

Findings

The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.

Originality/value

The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 THM 耦合优化高温地热提取:SC-CO2 增强建模的启示
目的 本研究探讨了地热储层开发过程中温度场、渗透率场和应力场之间的耦合效应,比较了井间压差、储层温度和采热液对地热开采的影响。本研究采用理论分析和数值模拟,利用热-水文-力学(THM)三场耦合模型,探讨地热储层中温度场、渗透率场和应力场的耦合机制。研究结果表明,井间压差对地热开采能力有显著影响,SC-CO2 的开采能力是水的 1.83 倍。增加水力裂缝和天然裂缝的孔径可有效提高地热产量,其中天然裂缝的提高尤为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
期刊最新文献
Dislocation-based finite element method for homogenized limit domain characterization of structured metamaterials A dual opposition learning-based multi-objective Aquila Optimizer for trading-off time-cost-quality-CO2 emissions of generalized construction projects An efficient concrete plastic damage model for crack propagation in gravity dams during seismic action A new thermo-optical system with a fractional Caputo operator for a rotating spherical semiconductor medium immersed in a magnetic field Optimizing high-temperature geothermal extraction through THM coupling: insights from SC-CO2 enhanced modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1