C3-VQA: Cryogenic Counter-based Co-processor for Variational Quantum Algorithms

Yosuke Ueno, Satoshi Imamura, Yuna Tomida, Teruo Tanimoto, Masamitsu Tanaka, Yutaka Tabuchi, Koji Inoue, Hiroshi Nakamura
{"title":"C3-VQA: Cryogenic Counter-based Co-processor for Variational Quantum Algorithms","authors":"Yosuke Ueno, Satoshi Imamura, Yuna Tomida, Teruo Tanimoto, Masamitsu Tanaka, Yutaka Tabuchi, Koji Inoue, Hiroshi Nakamura","doi":"arxiv-2409.07847","DOIUrl":null,"url":null,"abstract":"Cryogenic quantum computers play a leading role in demonstrating quantum\nadvantage. Given the severe constraints on the cooling capacity in cryogenic\nenvironments, thermal design is crucial for the scalability of these computers.\nThe sources of heat dissipation include passive inflow via inter-temperature\nwires and the power consumption of components located in the cryostat, such as\nwire amplifiers and quantum-classical interfaces. Thus, a critical challenge is\nto reduce the number of wires by reducing the required inter-temperature\nbandwidth while maintaining minimal additional power consumption in the\ncryostat. One solution to address this challenge is near-data processing using\nultra-low-power computational logic within the cryostat. Based on the workload\nanalysis and domain-specific system design focused on Variational Quantum\nAlgorithms (VQAs), we propose the Cryogenic Counter-based Co-processor for VQAs\n(C3-VQA) to enhance the design scalability of cryogenic quantum computers under\nthe thermal constraint. The C3-VQA utilizes single-flux-quantum logic, which is\nan ultra-low-power superconducting digital circuit that operates at the 4 K\nenvironment. The C3-VQA precomputes a part of the expectation value\ncalculations for VQAs and buffers intermediate values using simple bit\noperation units and counters in the cryostat, thereby reducing the required\ninter-temperature bandwidth with small additional power consumption.\nConsequently, the C3-VQA reduces the number of wires, leading to a reduction in\nthe total heat dissipation in the cryostat. Our evaluation shows that the\nC3-VQA reduces the total heat dissipation at the 4 K stage by 30% and 81% under\nsequential-shot and parallel-shot execution scenarios, respectively.\nFurthermore, a case study in quantum chemistry shows that the C3-VQA reduces\ntotal heat dissipation by 87% with a 10,000-qubit system.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic quantum computers play a leading role in demonstrating quantum advantage. Given the severe constraints on the cooling capacity in cryogenic environments, thermal design is crucial for the scalability of these computers. The sources of heat dissipation include passive inflow via inter-temperature wires and the power consumption of components located in the cryostat, such as wire amplifiers and quantum-classical interfaces. Thus, a critical challenge is to reduce the number of wires by reducing the required inter-temperature bandwidth while maintaining minimal additional power consumption in the cryostat. One solution to address this challenge is near-data processing using ultra-low-power computational logic within the cryostat. Based on the workload analysis and domain-specific system design focused on Variational Quantum Algorithms (VQAs), we propose the Cryogenic Counter-based Co-processor for VQAs (C3-VQA) to enhance the design scalability of cryogenic quantum computers under the thermal constraint. The C3-VQA utilizes single-flux-quantum logic, which is an ultra-low-power superconducting digital circuit that operates at the 4 K environment. The C3-VQA precomputes a part of the expectation value calculations for VQAs and buffers intermediate values using simple bit operation units and counters in the cryostat, thereby reducing the required inter-temperature bandwidth with small additional power consumption. Consequently, the C3-VQA reduces the number of wires, leading to a reduction in the total heat dissipation in the cryostat. Our evaluation shows that the C3-VQA reduces the total heat dissipation at the 4 K stage by 30% and 81% under sequential-shot and parallel-shot execution scenarios, respectively. Furthermore, a case study in quantum chemistry shows that the C3-VQA reduces total heat dissipation by 87% with a 10,000-qubit system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C3-VQA:基于低温计数器的变分量子算法协处理器
低温量子计算机在展示量子优势方面发挥着主导作用。散热来源包括通过温度间导线的无源流入以及低温恒温器中组件的功耗,如导线放大器和量子经典接口。因此,一个关键的挑战是通过减少所需的温间带宽来减少导线数量,同时保持恒温器内最小的额外功耗。应对这一挑战的一个解决方案是在恒温器内使用超低功耗计算逻辑进行近数据处理。基于对变分量子算法(VQAs)的工作量分析和特定领域的系统设计,我们提出了基于低温计数器的 VQAs 协处理器(C3-VQA),以增强低温量子计算机在热约束下的设计可扩展性。C3-VQA 利用单流量子逻辑,这是一种在 4 Ken 环境下工作的超低功耗超导数字电路。C3-VQA 对 VQA 的部分期望值计算进行了预计算,并使用低温恒温器中的简单位操作单元和计数器对中间值进行了缓冲,从而以较小的额外功耗降低了所需的温间带宽。我们的评估结果表明,C3-VQA 在连续运行和并行运行的情况下,将 4 K 阶段的总散热量分别降低了 30% 和 81%。此外,一项量子化学案例研究表明,C3-VQA 在 10,000 量子位系统中将总散热量降低了 87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance advantage of protective quantum measurements Mechanical Wannier-Stark Ladder of Diamond Spin-Mechanical Lamb Wave Resonators Towards practical secure delegated quantum computing with semi-classical light Quantum-like nonlinear interferometry with frequency-engineered classical light QUBO-based SVM for credit card fraud detection on a real QPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1