Prediction of Intriguing Valley Properties in Two-Dimensional Hf2TeIX (X = I, Br) Monolayers

IF 2.4 4区 材料科学 Q2 CRYSTALLOGRAPHY Crystals Pub Date : 2024-09-09 DOI:10.3390/cryst14090794
Kaiyuan He, Peiji Wang
{"title":"Prediction of Intriguing Valley Properties in Two-Dimensional Hf2TeIX (X = I, Br) Monolayers","authors":"Kaiyuan He, Peiji Wang","doi":"10.3390/cryst14090794","DOIUrl":null,"url":null,"abstract":"The valley degree of freedom, as a new information carrier, is important for basic physical research and the development of advanced devices. Herein, using first-principle calculations, we predict that two-dimensional Hf2TeIX (X = I, Br) monolayers harbor intriguing valley properties. Without considering spin–orbit coupling (SOC), the Hf2TeI2 monolayer has a semi-metallic nature, with Dirac cones located at the high-symmetry point K, and feature, with considerable Fermi velocity. When the SOC is taken into account, a band gap opening of 271 meV can be observed at the Dirac cones. More interestingly, the Hf2TeIBr monolayer exhibits intrinsic spatial inversion symmetry breaking, which leads to the emergence of valley-contrasting physics under SOC. This is demonstrated by the presence of spin–valley splitting and opposite Berry curvature at adjacent K points. Besides, the spin–valley splitting, the band gap and magnitude of the Berry curvature of the Hf2TeIBr monolayer can be effectively tuned by strain engineering. These findings contribute significantly to the design of valleytronic devices and extend opportunities for exploring two-dimensional valley materials.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090794","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The valley degree of freedom, as a new information carrier, is important for basic physical research and the development of advanced devices. Herein, using first-principle calculations, we predict that two-dimensional Hf2TeIX (X = I, Br) monolayers harbor intriguing valley properties. Without considering spin–orbit coupling (SOC), the Hf2TeI2 monolayer has a semi-metallic nature, with Dirac cones located at the high-symmetry point K, and feature, with considerable Fermi velocity. When the SOC is taken into account, a band gap opening of 271 meV can be observed at the Dirac cones. More interestingly, the Hf2TeIBr monolayer exhibits intrinsic spatial inversion symmetry breaking, which leads to the emergence of valley-contrasting physics under SOC. This is demonstrated by the presence of spin–valley splitting and opposite Berry curvature at adjacent K points. Besides, the spin–valley splitting, the band gap and magnitude of the Berry curvature of the Hf2TeIBr monolayer can be effectively tuned by strain engineering. These findings contribute significantly to the design of valleytronic devices and extend opportunities for exploring two-dimensional valley materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测二维 Hf2TeIX(X = I,Br)单层中的迷人谷特性
谷自由度作为一种新的信息载体,对基础物理研究和先进设备的开发具有重要意义。在此,我们利用第一原理计算,预测二维 Hf2TeIX(X = I,Br)单层蕴藏着引人入胜的谷特性。在不考虑自旋轨道耦合(SOC)的情况下,Hf2TeI2 单层具有半金属性质,其狄拉克锥位于高对称点 K,并具有相当大的费米速度特征。当考虑到 SOC 时,可以在狄拉克锥处观察到 271 meV 的带隙开口。更有趣的是,Hf2TeIBr 单层显示出内在的空间反转对称性破坏,这导致了在 SOC 作用下出现了山谷对比物理学。相邻 K 点出现的自旋谷分裂和相反的贝里曲率证明了这一点。此外,Hf2TeIBr 单层的自旋谷分裂、带隙和贝里曲率的大小可以通过应变工程进行有效调节。这些发现极大地促进了谷电子器件的设计,并拓展了探索二维谷材料的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystals
Crystals CRYSTALLOGRAPHYMATERIALS SCIENCE, MULTIDIS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.20
自引率
11.10%
发文量
1527
审稿时长
16.12 days
期刊介绍: Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a  forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.
期刊最新文献
Crystal Structure, Microstructure, and Dielectric and Electrical Properties of Ceramic Material Prepared Using Volcanic Ash Recent Advances in Ammonia Synthesis Modeling and Experiments on Metal Nitrides and Other Catalytic Surfaces Impact of Mg on the Feeding Ability of Cast Al–Si7–Mg(0_0.2_0.4_0.6) Alloys General Trends in the Compression of Glasses and Liquids Single-Crystal Structure Analysis of Dicarboxamides: Impact of Heteroatoms on Hydrogen Bonding of Carboxamide Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1